为什么r(A)=n-1就|A|=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 11:04:04
为什么r(A)=n-1就|A|=0
怎么证明R(AB)>=R(A)+R(B)-N

本题被称为薛尔福斯特公式,是Frobenius不等式的特殊情形,就是那里令B=E,我之前回答过http://zhidao.baidu.com/question/338678441.html?oldq=

当A是n阶矩阵,r(A)=n-1,证明r(A*)=1

问题可以这样看,设n阶阵A=(a_ij)的秩是n-1,A*=(A_ji)是伴随矩阵,其中A_ij是i行j列的代数余子式,下面要证明AA*=0.利用Laplace展开来看这里说明AA*的对角元全部等于0

线性代数 AB=0 为什么说r(B)小于等于 n-r(A)

利用了以下结论:1、n元齐次线性方程组Ax=0的基础解系中的向量个数是n-r(A),也就是基础解系的秩是n-r(A);2、向量组I由向量组II线性表示,则向量组I的秩小于等于向量组II的秩.根据AB=

证明如果A是n阶方阵,A*是A的伴随矩阵,那么 R(A*)=①n,R(A)=n,②1,R(A)=n-1,③R(A)=0,

当R(A)=n时,有A可逆,|A|≠0,由AA*=|A|E,说明A*可逆,R(A*)=n当r(A)=n-1时,有A不可逆,|A|=0所以AA*=|A|E=0,所以r(A*)<=n-r(A)=1.

[线性代数]如何证明r(A^n)=r(A^(n+1))

你的思路是对的,同解的证明如图.经济数学团队帮你解答.请及时评价.

线性代数矩阵AX=0 r(A)+r(X)=n,但是很多题目说是《=n.为什么啊

定理说的是A的秩与Ax=0的解空间,记为S,的秩的和=n题目中的A和X都是矩阵,因此理解也不同.由AX=0可知X的列向量都满足Ax=0,故都在解空间S中.于是r(X)

A是n(n>=2)阶方阵,则r(A*)= n,如果r(A)=n 1,如果r(A)=n-1 0,如果r(A)

在这里:\x0d\x0d\x0d你去我空间相册看看吧,有些结论的图片我都放那里了.

n阶矩阵,为什么AA*=|A|E=O=>r(A)+r(A*)≤n?

因为AA*=|A|E=O所以A*的列向量都是AX=0的解所以A*的列向量可由AX=0的基础解系线性表示所以r(A*)

A,B是n阶矩阵,且A是满秩矩阵,为什么R(AB)=R(B)?

A可逆,可表示为初等矩阵的乘积A=P1...PsP1,PsB相当于对B做初等行变换而初等变换不改变矩阵的秩所以R(AB)=R(B)

线性代数题设A是n阶方阵,A*是A的伴随矩阵,试证:R(A*)=n 当R(A)=n时1 当R(A)=n-1时0 当R(A

根据等式AA*=|A|E1.当R(A)=n时,|A|≠0,|AA*|=|A|^n≠0,所以|A*|≠0,R(A*)=n2.当R(A)≠n时,|A|=0,AA*=|A|E=0,R(A)+R(A*)再问:

设A为n阶方阵,A*为A的伴随矩阵,证明:n,r(A)=n r(A*)= 1,r(A)=n-1 0,r(A)

当R(A)=n时,有A可逆,|A|≠0,由AA*=|A|E,说明A*可逆,R(A*)=n当r(A)=n-1时,有A不可逆,|A|=0所以AA*=|A|E=0,所以r(A*)=1.所以r(A*)=1当r

设A为n阶方阵,证明:(1)若A^2=A,则r(A)+r(A-E)=n (2)若A^2=E,则r(A+E)+r(A-E)

这里边用到两个结论:r(A+B)=r(A+E-A)=r(E)=n.中间等号必须成立,因此r(A)+r(A-E)=n.2、(A+E)(A-E)=0,因此n>=r(A+E)+r(A-E)=r(A+E)+r

设A为n阶矩阵,证明r(A^n)=r(A^(n+1))

如果知道Jordan标准型的话就显然了.如果不知道的话就证明A^{n+1}x=0和A^nx=0同如果A非奇异则显然成立,否则利用n-1>=rank(A)>=rank(A^2)>=...>=rank(A

n阶矩阵A^2=A,r(A)=r,为什么λ=1是r重特征值,0是r重特征值

这题0是n-r吧再问:0是n-r,打错了不过已经知道了^_^

A、B都是n阶方阵.为什么B的行列式不等于零,r(AB)=r(A)

因为B行列式不为零,所以B=k*Q1Q2...Qt(Qi为初等矩阵,对应A的初等列变换)由于矩阵经过初等列变换不改变秩,故A经每步初等列变换秩序不变,故r(AB)=r(A)不懂追问

设n阶矩阵,r(A)=n-1,证明:r(A*)=1 (A*)表示A的伴随矩阵.

知识点:若AB=0,则r(A)+r(B)再问:因为r(A)=n-1,所以|A|=0这个怎么理解?再答:你教材中矩阵的秩怎么定义的?1.矩阵的秩等于行秩等于列秩2.A中最高阶非零子式的阶

为什么r(A)=1,所以方程组AX=0的基础解系含n-r(A)个线性无关的解向量?

方程组AX=0的基础解系含n-r(A)个线性无关的解向量,这是定理,与r(A)=1没有因果关系再问:那这个解空间的解向量一定线性相关吗?再答:一定线性相关解空间的解向量有无穷多,齐次线性方程组的解的线

设A为n阶(n≥2)方阵,证明r(A*)= n ,r(A)=n r(A*)= 1,r(A)=n-1 r(A*)= 0,r

点击看大图:再问:当r(A)=n-1时,A至少有一个n-1阶子式不为0,那为什么A*≠0?再答:A*是由代数余子式Aij构成的Aij=(-1)^(i+j)MijMij包含了A的所有n-1阶子式所以至少

线性代数秩的证明题设A是n*n矩阵r(A)=n时,r(A*)=nr(A)=n-1时,r(A*)=1r(A)

AA*=|A|E1.如果r(A)=n,则|A|≠0|A*|≠0所以A*可逆.r(A*)=n2.r(A)=n-1时|A|=0,所以AA*=Or(A)+r(A*)