(tanX-sinX) X^2*sinX

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 04:44:58
(tanX-sinX) X^2*sinX
求极限lim.[( tanx-sinx) /(sin^2 2x)]

lim(x→0)[(tanx-sinx)/(sin^22x)]=lim(x→0)[tanx(1-cosx)/(2x)^2]=lim(x→0)[x*x^2/2]/(2x)^2=0

lim(sinx)^tanx (x趋向于pai/2)

lim(sinx)^tanx=lime^[tanx*lnsinx]=e^{lim[lnsinx/cotx]}利用洛必达法则=e^{lim[(cosx/sinx)/(-1/(sinx)^2)]}=e^{

lim(x→ 0)(tanx-sinx)/xsinx^2

先等价无穷小代换:lim(x→0)(tanx-sinx)/xsinx^2=lim(x→0)(tanx-sinx)/x^3原式=lim(sin/cosx-sinx)/x³=limsinx(1-

求极限:lim(sinx)^tanx (x趋近于pai/2)

解法一:∵lim(x->π/2)[(sinx-1)tanx]=lim(x->π/2){[(sinx-1)/cosx]sinx}=lim(x->π/2)[(sinx-1)/cosx]*lim(x->π/

如何用tan x/2表示sinx ,cosx ,tanx

sinx=2sinx/2cosx/2=2[cos(x/2)]^2(tgx/2)=2tg(x/2)/[1+[tg(x/2)]^2]cosx=2(cosx/2)^2-1=2/[1+(tg(x/2)^2]-

已知(sinx+cosx)/(sinx-cosx)=3,求tanx,2sin²x+(sinx-cosx)&su

(sinx+cosx)/(sinx-cosx)=3sinx+cosx=3sinx-3cosxsinx=2cosxtanx=sinx/cosx=2sinx=2cosx带入恒等式sin²x+co

证明sinx+tanx>2x

注:设0

求化简(sinx+tanx)/cos^2x+sin^2x+cosx

(sinx+tanx)/(cos^2x+sin^2x+cosx)=(sinx+sinx/cosx)/(1+cosx)=sinx(cosx+1)/[cosx(1+cosx)]=sinx/cosx=tan

“化简( tan3/2x-tanx/2)(cosx+cos2x)/sinx”

tan(3x/2)-tan(x/2)=[sin(3x/2)/cos(3x/2)-sin(x/2)/cos(x/2)]=(sin3x/2cosx/2-con3x/2sinx/2)/cos3x/2cosx

lim(x趋向于0)((tanx-sinx)/(x*(sinx)^2)) 求极限,

lim(x趋向于0)((tanx-sinx)/(x*(sinx)^2))=lim(x趋向于0)[(sinx/cosx-sinx)]/x(sinx)^2=lim(x趋向于0)[1-cosx)/x(sin

sin^2x*tanx+cos^2x*cotx+2sinx*cosx=tanx+cotx

(sinx)^2tanx=[1-(cosx)^2]tanx=tanx-(cosx)^2tanx=tanx-(cosx)^2*sinx/cosx=tanx-sinxcosx(cosx)^2cotx=[1

lim(x趋近0) (sinx-tanx)\[(2+x)^2\4][(2+sinx)^1\2 -1]=?

如果你没有抄错.x→0时,2+x→2,(2+x)^2→4,(2+x)^2\4→1sinx→0,2+sinx→2,(2+sinx)^1\2-1→根号2-1分子→0-0=0分母不是无穷小,则极限为0.再问

提问数学难题求证:sin^2x*tanx+cos^2x/tanx+2sinx*cosx=tanx+1/tanx

(sinx)^2tanx=[1-(cosx)^2]tanx=tanx-(cosx)^2tanx=tanx-(cosx)^2*sinx/cosx=tanx-sinxcosx(cosx)^2cotx=[1

1-2sinx cosx /COS^2X-SIN^2X =1-tanx/1+tanx 求证

这里用到:(sin)^2+(cosx)^2=1,原式=(cosx-sinx)^2/(cosx+sinx)(cosx-sinx)=(cosx-sinx)/(cosx+sinx)=(1-tanx)/(1+

求证:1/tanx-tanx=(2cos^2x-1)/sinx*cosx

右式=(cos²x-sin²x)/sinx*cosx=cosx/sinx-sinx/cosx=1/tanx-tanx=左式

证明:sinx+tanx>2x (0

2x不是角度,是弧度,弧度为实数,在这个大前提下:令F(x)=sinx+tanx-2x,对其求导得cosx+sec^2x-2,即cos+1/cos^2x-2,实行平均值不等式,有1/2cosx+1/2

lim(x→0)的时候(sinx-2tanx)/tanx的sinx不能无穷小代换换,因为有加减.但是(sinx/tanx

大神sinx/tanx=cosx(sinx/tanx-6x+x^2)/sinx=cosx/sinx+(-6x+x^2)/sinx=无穷大吧在里面也不能换

lim (tanx-sinx)/x^2*sinx x趋于0求极限怎么解

lim(tanx-sinx)/(x^2*sinx)=limtanx(1-cosx)/(x^2*sinx)(等价无穷小代换)=limx(x^2/2)/(x^2*x)=1/2