(x 1)乘以e的负x次方的定积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:59:39
e的(-x)次方从负无穷到0的定积分是-1/2+1/2*e(无穷次方)即:正无穷从答案上来看原函数应为:F(x)=(1/2)[∫e^(x)dx(积分下限为负无穷,上限为0)]+(1/2)[∫e^(-x
d(e负X次)=(e(负X次方)*d(-x)=-e负X次方
∫e^-x*sin2xdx=-∫e^-x*sin2xd(-x)=-∫sin2xde^-x=-e^-xsin2x+∫e^-x*cos2x*2dx=-e^-xsin2x-2∫e^-x*cos2xd(-x)
∫xe^(-x)dx=-∫xe^(-x)d(-x)=-(xe^(-x)-∫e^(-x)dx)=-(xe^(-x)+∫e^(-x)d(-x))=-(xe^(-x)+e^(-x)+C)=-xe^(-x)-
再问:�����
第n个:-1的n次方乘以n乘以x的n次方2010个:2010乘以x的2010次方
可以用求导的方法吗?再问:可以我高3再答:那就可以蛮干了。。f'(x)=(1-x)e^(-x),有f(x)极大值1,在(负无穷,1)递增,在(1,正无穷)递减,根据f(0)=f(正无穷)=0可以画草图
复合函数求导去y=cosx则(e^y)'=e^y*y'=e^cosx*(cosx)'=e^cosx*(-sinx)
分部积分,如图:
∫[0,+∞)x^n*e^(-sx)*dx=1/s^(n+1)∫[0,+∞)t^[(n+1)-1]*e^(-t)dt(设t=sx)=1/s^(n+1)*Γ(n+1)=n!/s^(n+1)
y'=e^(-x)-xe^(-x)所以y''=-e^(-x)-[e^(-x)-xe^(-x)]=(x-2)e^(-x)再问:谢谢了复合函数我老分不清算几次理解成(e^x)的-1次方求导了不过这么想是不
上下乘e^x原式=∫上限1,下限0(e^x/(e^2x+1)dx=∫上限1,下限0(de^x/(e^2x+1)=arctan(e^x)限1,下限0=arctane-π/4
-e^2没变化
不就是1啦原函数为e^xx=0e^0=1x=-infe^-inf=0所以为1
=e的负x次方*(-x)'=-e的负x次方再问:这不是复合函数求导数啊??再答:嗯
直接套用公式d/dx∫(a→b)f(t)dt=b'·f(b)-a'·f(a)d/dx∫(x→-1)te^(-t)dt=0-x'·e^(-x)=0-e^(-x)=-e^(-x)答案中没可能有t,除非t在
int('t*e^(-t)',-3,4)%-3是下限,4是上限ans=-(1+4*log(e)-e^7+3*e^7*log(e))/log(e)^2/e^4
x*e^(-x)|(0,+∞)x->+∞limx/e^x=lim1/e^x=0x=0原式=0所以两者差为0