为圆柱面x² y²=1介于z=0和z=1之间的部分,则(x+1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:43:32
根据圆柱面的面积公式,ds=2πRdz把x^2+y^2=R^2带入原积分得到原积分=∫ds/(x^2+y^2+z^2)=∫(0->h)2πRdz/(R^2+z^2)=2π∫(0->h)d(z/R)/[
考虑yz面Σ₁:x=√(4-y²)或Σ₂:x=-√(4-y²)dx/dy=-y/√(4-y²)dx/dz=0∫∫Σz²dS=2∫∫Σ
对于z=F(X,Y),A=∫∫DDA=∫∫D√[1+(FX)2+(Fy)的表面积2]DXDY锥面Z=√(X2+Y2)是圆柱形表面X2+Y2=2倍的切削积分区域D为:0≤X≤2,-√(2X-X2)1,0
对于z=f(x,y),曲面面积为A=∫∫DdA=∫∫D√[1+(əf/əx)²+(əf/əy)²]dxdy锥面z=√(x²+y
这个题不用笔来算,用嘴来算就行了.第一步,高斯定理.被积函数在积分域里面是连续的,没有奇点.于是,原积分=∫∫∫[(x^2)对z求偏导+0对x求偏导+0对y求偏导]dxdydz-多算出来的两个圆形底面
不对吧,怎么我算的是0?前面那个是dxdz还是dydz?再问:就是dxdz不是零,还有那个截面,我就是不会算截面的!再答:呵呵,本来看到外侧就用了散度公式--不过也算不到你那个答案。。。你再看看吧
=∫∫zdxdy=∫∫(x-y)dxdy而积分区域底面是一个圆弧.由圆x^2+y^2=2x与y=x相交围成利用极坐标=∫∫r(cosθ-sinθ)rdrdθ而积分区域变为r^2=2rcosθ,所以为r
设x=ρcosθ,y=ρsinθ那么x²+y²=ρ²=R²原积分就变为∫(0到2π)∫(0到H)1/(R²+z²)dzdθ=2π∫(0到H)
圆柱面x^2+y^2=1的投影的面积0,只计算平面z=0和z=1+x即可,而平面z=0代入为0平面z=1+x的投影:x^2+y^2
首先要知道,投影时不能像xoy面投影的,因为在xoy面上投影为线条,没有范围的……其实这个问题不用投影就可以解决的,先看看曲面∑是关于xoz面对称的,但是积分函数中yz一项为y的奇函数,由对称性可知,
这个圆柱面在xoy上的投影为0所以dxdy=0写出圆柱面的参数方程x=Rcost,y=Rsint,0
求过三条平行直线x=y=z,x+1=y=z-1与x-1=y+1=z-2的圆柱面的方程这不是那年的全国大学生数学竞赛预赛第一题么.这三条平行线的方向向量
二重积分,投影面实在xoy上,但此圆柱面在xoy上的投影只是一个圈(不包含内部),估面积为零
先求椭圆面的面积再求椭圆面与平面的夹角用椭圆面的面积除以夹角的余弦值可得截下部分的面积
V=∫dt∫r*rdr=2π/3.