(x-1)^N 1展开式

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:08:16
(x-1)^N 1展开式
求(x-1/x)9展开式中x3的系数.

第r+1项是T(r+1)=C(9,r)x^(9-r)*(-1/x)^r所以9-r-r=3所以r=3T4=C(9,3)*x^6*(-1/x)^3=-84即(x-1/x)9展开式中x3的系数是-84

证明(1+x)ˆ2n的展开式的中间一项是(2x)ˆn1×3×5×…×(2n-1)/n!

T(n+1)=C(2n,n)*x^n=(2n)!*x^n/(n!×n!)=2×4×6×...×2n×1×3×5×...×(2n-1)*x^n/(n!×n!)=2^n*(1×2×3...×n)×1×3×

数学ln(1+x)展开式

ln(1+x)=1+1/x-1/x^2+1/x^3.+(-1)^(n-1)/x^n+Peano余项

(X+1/X)^4的展开式中的常数项是?

把通项写出来就知道啦通项中x的指数是4-2n(n是指第n项)然后常数项是没有x的所以只要x的指数为0就可以了也就是说n=2所以常数项就是(4*3)/2=6

(x-1/x)^8展开式中各项系数之和为,

算法一:  求二项式系数和有一个公式的  合二项式系数之和等于2^n(n为该二项式的幂指数)  所以该二项式系数和为2^8=256  算法二:  展开计算:1+8*7/2+8*7*6/(3*2)+8*

(x-1/x)2n展开式的常数项是多少

(x-1/x)2n展开式的第r+1项是C2n(r)*x^(2n-r)*(-1/x)^r=C2n(r)*x^(2n-r-r)*(-1)^r令2n-r-r=0,得r=n所以,常数项是C2n(n)*(-1)

对数函数ln(x+1)的幂级数展开式结果有几种?

两者是一致的.详解如图:只要一个函数能展开成幂级数,那这个幂级数必然是这个函数的泰勒级数.

(3次根号下X+X^2)^2n的展开式二项式系数和比(3X-1)^n展开式

2^2n-2^n=992(2^n+31)(2^n-32)=02^n=32n=5(2X-1/X)^10的展开式中,二项式系数最大的项为第6项C(10,5)(2X)^5(-1/X)^5

二项式(x+1/x)^n展开式中,前三项系数依次成等差数列,则展开式各项系数和是

由Cn1+Cn3=2Cn2有n+n*(n+1)*(n+2)/6=2*n*(n+1)/2得n=5二项式的各项系数和2^nn=5为32

请教1+√x泰勒展开式

泰勒展开式一般形式:f(x)=f(x0)+f(x0)'(x-x0)+[f(x0)''/2!](x-x0)^2+···+[f(x0)^(n)/n!]*(x-x0)^n+Rn(x)Rn(x)=[f(sx)

(a+b)^n1.二次项展开式的通项公式是 什么2展开式中二项式系数是1T(k+1)=C(n,k)a^(n-k)b^k2

二项式定理binomialtheorem二项式定理,又称牛顿二项式定理,由艾萨克·牛顿于1664、1665年间提出.此定理指出:其中,二项式系数指...等号右边的多项式叫做二项展开式.二项展开式的通项

求展开式中的常数项(x^2+x分之1)的6次方的展开式中的常数项为多少?

先用二项式定理(见高中二年级数学课本)求其通项公式,然后

(x+1/x)^n展开式的二项系数之和为64,则展开式的常数项是?

(x+1/x)^n=(x+1)^n/x^n分子展开后可得x^n+ax^(n-1)+bx^(n-2)……+1,所以常数项恒为1

(在线等)已知(√X+1/2x)^n的展开式中的前三项系数成等差数列求展开式中含...

第一项为0Cn=1第二项为1/2^1*1Cn=n/2第三项为1/2^2*2Cn=n(n-1)/8;有等差数列条件有1+n(n-1)/8=2n/2解得n=8或1n=1时没有前三项故n=8;可以得到要含X

求(2x-1)5的展开式中

(1)设(2x-1)5=a0+a1x+a2x2+…+a5x5,令x=1得各项系数之和:a0+a1+---+a5=1;(2)各项的二项式系数之和C05+C15+−−−+C55=25=32.(3)偶数项的

函数幂级数展开式求 1/(1+2x) 在x=0处的展开式

因为1/(1+x)=1-x+x^2-x^3+...+(-1)^(n-1)x^n+...所以1/(1+2x)=1-(2x)+(2x)^2-(2x)^3+...+(-1)^(n-1)(2x)^n+...=