二元Logistic回归 自变量和因变量都是二分类变量 SPSS
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 18:21:45
logistic回归又称logistic回归分析,主要在流行病学中应用较多,比较常用的情形是探索某疾病的危险因素,根据危险因素预测某疾病发生的概率,等等.例如,想探讨胃癌发生的危险因素,可以选择两组人
logistic回归主要用于危险因素探索.因变量y为二分类或多分类变量,自变量既可以为分类变量,也可以为连续变量.比如,探索胃癌发生的危险因素,胃癌作为因变量,分为两类,“是”或“否”.危险因素可以有
可以把单因素有序回归里面有意义的变量先纳入,再在多因素过程中通过向后法筛选变量.查看原帖
logistic回归对自变量类型一般不做规定,但它要求自变量与logitp之间应符合线性关系.当自变量为分类变量时,可不必考虑线性关系,但当自变量为连续型变量时,则需要检验二者之间的线性关系是否成立.
就是系数加上变量这么来写啊,比如0.196VAR00002-0.152VAR00003-.我替别人做这类的数据分析蛮多的
要大于等于三个水平的分类变量才有必要生成哑变量的,只有两个水平的话不用.logi回归的因变量就是只能俩水平:0和1的.我一般生成哑变量是直接conpute的.简单说分类指的是一个变量在测量中的属性,就
这个问题我想教科书上都有吧建议你看看 姜启源 的《数学建模》或者你可以用google学术,收索一些相关文献看看既然做数据分析你应该也会用到SPSS,推荐看看这篇博文吧
是否有统计学意义主要看sig如果这个值小于0.05那么就是相关的,在此基础上看第一列B值,负号代表负相关.你的例子中性别不对因变量产生影响.另外logistic回归中Exp(B)值即为OR
如果你的分析方法是正确的话,这个结果是能够说明的变量3在该模型中是有贡献的,有意义的,而变量1并不显著,对Y影响不大.
额,本来看到这个问题很久,不想冒泡,因为做这种东西没有技术含量.但是出来冒泡的原因是:楼上的不要误导人,这么多变量还是线性回归?你是学统计的吗?何况不可能没有多重共线问题的.自己的建议:使用因子分析或
可以把单因素有序回归里面有意义的变量先纳入,再在多因素过程中通过向后法筛选变量.查看原帖
logit回归的结果一般不去太在意方程.数据发我,我看看再问:大哥(姐),做财务预警模型要有ST公司,我想问一下找得到30或35家2010年被首次ST的公司吗?
这个问题可以这样回答,自变量在两个显著性框中的显著性不一样,或者说在一个里面显著,在另一个不显著,这样的可以不解释.
给个邮箱再问:929451106@qq.com再答:已发,看懂了吗再问:太复杂了再答:你用的是中文版还是英文版??再问:中文版的,不过我们要解决的问题好像和你给的那个有区别再答:主要是什么问题?再问:
看你这个X应该是有4个分类的,那么生成g-1=3个哑变量,所以是X1_1-X1_3.但要注意的是在做logistic回归的时候同一变量的所有哑变量应该是同时引入、同时剔除出模型.
我暑假做的一篇论文就是用Logistic模型做的,用的SPSS17.0,都是自学的说(我开学大四,我们学校本科阶段不教计量经济学和SPSS软件,比较苦逼),废话不多讲,直接上主题.根据我两个月来的理解
你先找到自变量和因变量,就可以直接利用SPSS中的曲线回归中logistic的模型拟合就可以了
自变量通过不检验有以下这些可能:1、方程本身没有意义,比如我们用身高来预测性别,这个肯定通不过检验.2、自变量本省有问题,二项逻辑回归对自变量的要求比较严,一般是要求连续、正态分布的数据才可以.如果自
(1)如果六大类分类变量“教育程度”,“文盲”,“小学”,“初中”,“高中”,“大学”,“大学及以上,很明显(6-1)=5个虚拟变量.(2),如果你认为太多的虚拟变量,可以结合分类,如“文盲”,“小学
很高深的东西,给你个参考.实用现代统计分析方法与spss应用Spss电脑实验-第八节(3)两分类Logistic回归分析