(x-f(t))dt 求导
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 16:15:59
t并不是这个函数F(x)的变量,因此如果你非要对t求导的话,那么结果为0,因为F(x)只与x有关,与t无关.此处:F(x)=∫(0~x)f(t)dt,注意F(x)是指这个积分算完后的结果,这个积分算完
再问:我在书上做题时发现书上用的都是xf(x)-∫(0,x)f(t)dt这个结论。再答:
xf(x)一楼记错了吧,a若是常数的话,就不用减了除非上下限都是函数而不是变量
如果要d(x/2)的话,注意积分上下限可能有更变的.将t变为t/2,d(t/2)=(1/2)dt==>dt=2d(t/2)当t=0时,t/2=0当t=2x时,t/2=2x/2=x所以∫(0→2x)f(
令g(u)=∫(-9→u)cos(t^2+t)dt,u=sinx,则F(x)=g(sinx),所以F'(x)=g'(u)u'=cos(u^2+u)cosx,即F'(x)=cosxcos[(sinx)^
∫(上限x,下限0)(x^2-t^2)f(t)dt=∫(上限x,下限0)x^2f(t)dt-∫(上限x,下限0)t^2f(t)dt现在分成两部分了,第一部分把x^2提出来,∫(上限x,下限0)(x^2
f(x)=∫[0,1]sin(4x)cos(4t)dtsin4x与积分变量t无关,可以看做常数提到外面f(x)=sin(4x)∫[0,1]cos(4t)dt=(1/4)sin(4)sin(4x)所以f
t=x-udt=d(x-u)=-du没错应该是dt=-du再问:����-du�������������Ǹ��ģ��ο���������ġ�再答:Ӧ���Ǹ��ġ������
这里是对x求导,而不是t,对积分上限函数求导就把上限x代替积分函数中的t即可,所以∫(0到x)f(t)dt的导数就是f(x)而∫(0到x)t*f(t)的导数就是x*f(x),x的导数则是1所以F(x)
∵[∫(0,x)f(t)]'=f(x)[∫(0,x)xf(t)dt]'=[x∫(0,x)f(t)dt]'=x*[∫(0,x)f(t)dt]'+(x)'*∫(0,x)f(t)dt=x*f(x)+1*∫(
先换元,-f(u)du积分限变为x到0,结果是-f(x-u)再问:为何结果还有u?再答:写错了是f(x)
∫[0,x]f(x-t)dt令u=x-t,则du=-dt∫[0,x]f(x-t)dt=∫[x-0,x-x]f(u)(-du)=-∫[x,0]f(u)du实际上只是做了u=x-t的变换,并没有交换上下限
你对复合求导的概念弄得不清楚,dy/dt=(dy/dx)(dx/dt)=f'(x)g'(t)f(dx/dt)是另一个函数,实际上:f(dx/dt)=f[g'(t)]
首先题目里的变量是t,从积分里的dt这里看出来,所以x不是变量就跟题目里dx存在,x是变量,t是常数一样一般默认(习惯)x是参数只是因为大家习惯用x了,其实变量就是从微分dt那里看的其次是题目里存在d
令u=x-t,du=-dt∫(下限0,上限X)f(x-t)dt=-∫(下限x,上限0)f(u)du=∫(下限0,上限X)f(u)du导数为f(x)
还是你啊,上次不一次说清,一块做了多好,好像是多了一点噢.这个是一个,不定上限积分的题目.对这个书上也有专门的公式,也就是牛顿—莱布尼次公式.在高等数学上册,不定积分,微分.一,把积分函数分离∫[0~
在x=f'(t)对t求导数中,表明此时t是自变量,x是t的函数,t此处不是函数,就不符合复合函数的求导规则,dx/dt直接等于f''(t),t为自变量,不再求导.但是问题问的有些不清楚,在此类求导问题
求导得f(-x)再问:能不能写一下过程啊,我不明白的有两个地方,一个是利用求导公式∫(x,0)f(U)du=f'(x),这里能不能把X完全替换u,不管是f(-u)还是f(u)都变成f‘(x),第二个问
令F'(t/3)=f(t/3)原积分=F(x)-F(0)导数=F'(3*x/3)-F'(0)=3f(x)
F(x)=∫(0→x)(x-t)f'(t)dt=x∫(0→x)f'(t)dt-∫(0→x)tf(t)dtF'(x)=∫(0→x)f'(t)+xf'(x)-xf(x)