(x-ln(1 tanx)) sin^4x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:48:48
(x-ln(1 tanx)) sin^4x
(sinx^3+tanx-sinx)/ln(1+x^3)x趋近于0的极限

=lim(sinx^3+tanx-sinx)/(x^3)【等价无穷小代换】=lim(sinx^3)/(x^3)+lim(tanx-sinx)/(x^3)【因为按+分开后两部分极限都存在,故可以分开】=

求定积分∫ln(1 tanx)dx(o≤x≤π/4)

ln(1+tanx)=lngen2+lnsin(x+pai/4)-lncosxlnsin(x+pai/4)在0到pai/4上的积分等于lnsinx在pai/4到pai/2的积分用pai/2减积分的上下

lim(x→0) [ln(1+x+x^2)-ln(1-x+x^2)]/arcsinx tanx 怎么算

洛必大法则,求导吧lim(x→0)[ln(1+x+x^2)-ln(1-x+x^2)]/arcsinxtanx=lim(x→0)[(1+2x)/(1+x+x^2)-(-1+2x)/(1-x+x^2)]*

∫ln(1+tanx)dx=

如果是求定积分的话就好了∫[0,π/4]ln(1+tanx)dx换元π/4-t=x=-∫[π/4,0]ln[1+(1-tant)/(tant+1)]dt==∫[0,π/4]ln[2/(tant+1)]

求极限limx到0ln(1+x²)(根号下1+x-1)/x-tanx

看不懂你写的什么再问:再答:等价无穷小代换再问:谢谢了!再答:x-tanx根据泰勒公式得出再问:才开始学泰勒公式,没太掌握再答:那一章是高数的重中之重再问:工科数分,简直云里雾里

X趋向0 求(e^tanx-e^sinx)/((1-cosx)ln(1+x))的极限

由e^x=1+x+o(x)又sinx=x-x^3/6+o(x^3),tanx=x+x^3/3+o(x^3)所以e^tanx-e^sinx=(1+tanx+o(tanx))-(1+sinx+o(sinx

lim(x→0)(1-cosx)[x-ln(1+tanx)]/(sinx)^4

=lim(x→0)x^2/2*[x-ln(1+tanx)]/[x^4]=lim(x→0)[x-ln(1+tanx)]/[2x^2]=lim(x→0)[1-secx^2/(1+tanx)]/(4x)=l

(tanx-sinx)/ln(1-x^3),当x趋于0时它的极限

原式=lim(x→0)tanx(1-cosx)/(-x^3)=lim(x→0)[x(x^2/2)]/(-x^3)=lim(x→0)(x^3/2)/(-x^3)=-1/2

求极限,lim(x->0) (e^x-e^sinx ) / [ (tanx )^2 * ln(1+2x)]

利用等价无穷小和L'Hospital'sRule即可lim(x->0)(e^x-e^sinx)/[(tanx)^2*ln(1+2x)]=lim(x->0)e^x(e^(x-sinx)-1)/[(tan

求极限:lim{[x-ln(1+tanx)]/sinx*sinx},x趋于0, 求帮忙

因为分子分母同时趋于0,需要利用上下分别求导方法lim{[x-ln(1+tanx)]/sinx*sinx}=lim{[1-(secx)^2/(1+tanx)]/2sinx*cosx}分子分母求导=li

求lim[sinx(ex-1)/1-cosx+ln(1+x)/tanx]

运用极限的运算性质lim(x→0)[sinx(e^x-1)/(1-cosx)+ln(1+x)/tanx]=lim(x→0)sinx(e^x-1)/(1-cosx)+lim(x→0)ln(1+x)/ta

x→0,lim(1-cosx)[x-ln(1+tanx)]/sinx^4的极限

首先用等价无穷小代换,(1-cosx)换成1/2x^2,sinx^4换成x^4lim(1-cosx)[x-ln(1+tanx)]/sinx^4=lim(1/2)x^2[x-ln(1+tanx)]/x^

x趋向于0+,lim(ln(tan4x)/ln(tanx))

limlntan(4x)/lntanx(∞/∞)=lim[4(sec4x)^2/tan(4x)]/[(secx)^2/tanx]=lim[4/(4x)](x/1)=1

matlab求解导数y=ln((2tanx+1)/(tanx+2)),y=sin(e^(x^2+3x-2))

y1='log((2*tan(x)+1)/(tan(x)+2))'%log在matlab中求自然对数y11=diff(y1)%求导simple(y11)%化简y2='sin(e^(x^2+3*x-2)

[tanx+(1/tanx)]cos^x

=(sinx/cosx+cosx/sinx)cos²x=[(sin²x+cos²x)/(sinxcosx)]*cos²x=[1/(sinxcosx)]*cos&

lim(x→0)[cos√(1-x^2)]/[tanx*ln(1+x)]

应该是∞无穷大分子cos√(1-x^2)趋近于cos1分母tanx趋近于0ln(1+x)趋近于0实数除以一个无穷小应该就是无穷大咯

谁知道ln(1+tanx)的原函数?

y=ln(1+tanx)e^y=1+tanxe^y-1=tanxx=arctan(e^y-1)交换x,y位置y=arctan(e^x-1)