(x-t)arctant在0到x上的积分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:55:54
(x-t)arctant在0到x上的积分
由参数方程x=1+t2,y=t-arctant所确定的函数y=y(x)的二阶导数

x't=2ty't=1-1/(1+t^2)=t^2/(1+t^2)y'=dy/dx=y't/x't=t/[2(1+t^2)]d^y/dx^2=d(y')/dx=d(y')/dt/x't=1/2*[1+

当x趋向无穷时,(arctant)^2在【0,x】的定积分除以根号下(x^2+1)

由洛必达法则,原式=lim(x趋于无穷)(arctanx)^2/(x/√(x^2+1))=lim√(x^2+1)/x*lim(arctanx)^2=1*(π/2)^2=π^2/4

设参数函数x=ln(1+t^2),y=t-arctant.求(d^2y)/(dx^2).

dy/dx=[1-1/(1+t²)]/[2t/(1+t²)]=t/2d²y/dx²=(1/2)*dt/dx=(1/2)/(dx/dt)=(1/2)/[2t/(1

设参数方程x=t-In(1+t^2) y=arctant 确定函数y=y(x),求d^2y/dx^2

dx/dt=1-2t/(1+t^2)=(1+t^2-2t)/(1+t^2)=(t-1)^2/(1+t^2)dy/dt=1/(1+t^2)y'=1/(t-1)^2dy'/dt=-2/(t-1)^3y"=

求极限lim(x→+∞)∫[0,x](arctant)²dt/√(x²+1)

题目最后一个x是否应该为t?如果是,解答如下lim(x→+∞)∫[0,x](arctant)²dt/√(t²+1)=lim(x→+∞)∫[0,x](arctant)²d(

用微分求参数方程 x=t-arctant,y=ln(1+t²)确定的函数Y=y(x)的导数

dy/dt=2t/(1+t²)dx/dt=1-[1/(1+t²)]=t²/(1+t²)dy/dx=(dy/dt)/(dx/dt)=2/t

求dy/dx.x=ln(1+t²),y=t-arctant求详细步骤.不要只给答案.

再问:e,那个dx/dt=2t/(1+t²)怎么来的??不应该是dx/d(1+t²)=1/(1+t²)然后怎么化的么。。。。。再答:这是复合函数的求导,先求出lnt的导数

设x=ln(1+t²) y=t-arctant 求dy/dx d²y/dx²

楼主的补充问题,涉及到我们教学中长期普遍存在,却无人介意,更无人愿意更改的一个懒惰习惯,这是我们与英美教学的显著区别之处.点击放大,荧屏放大再放大:

求参数方程{█(x=In(1+t^2)@y=t-arctant)┤所表示的函数的导数dy/dx

答:x=ln(1+t²),x'(t)=2t/(1+t²)y=t-arctant,y'(t)=1-1/(1+t²)=t²/(1+t²)dy/dx=(dy

求函数f(x)=∫(上限x,下限0)(t+1)arctant dt 的极值

求函数f(x)=(0,x)∫(t+1)arctantdt的极值令df(x)/dx=(x+1)arctanx=0得驻点x₁=-1,x₂=0为书写简便,先求不定积分.∫(t+1)a

求由参数方程x=arctant,y=ln(1+t^2)所表示的函数y=y(x)在点t=1对应点的切线方程和法线方程?

dx=1/(1+t^2)*dt,dy=2t/(1+t^2)*dt,所以切线斜率为k=dy/dx=2t|(t=1)=2,又切点坐标为x=arctan1=π/4,y=ln(1+1)=ln2,所以切线方程为

x=ln(1+t^2),y=t-arctant 求d^2y/dx^2的导数,

先分别求出dx/dt和dy/dt,假设A=dx/dt,B=dy/dt然后用B/A得出dy/dx设C=B/A=dy/dxC中只含有t.因此,d^2y/dx^2=C/dt乘以dx/dt的倒数(dt/dx)

方程组 x=ln√1+t^2 y=arctant 求 dy/dx

分别算出dx,dy,然后相除就行详见参考资料

x=ln(1+t^2),y=arctant+π 求dy/dx和d2y/dx2

dx/dt=2t/(1+t²)dy/dt=1/(1+t²)dy/dx=1/(2t)d(dx/dt)/dt=(2-4t²)/(1+t²)²d(dy/dt

方程组 x=ln√1+t^2 y=arctant 求 dy/dx 包含了哪些知识点

∵dx=2tdt/√(1+t²)dy=dt/(1+t²)∴dy/dx=[2tdt/√(1+t²)]/[dt/(1+t²)]=2t√(1+t²).

x=t-ln(1+t^2);y=arctant;求y关于x的二阶导数;只要答案

x=tany+ln(cosy^2),dy/dx=(dx/dy)^-1=(tany-1)^-2,y"=d(dy/dx)/dy*dy/dx=-2secy^2/(tany-1)^5