二次函数y=ax^2 bx c若ax^2 bx c=k有两个不相等的实数根

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:38:49
二次函数y=ax^2 bx c若ax^2 bx c=k有两个不相等的实数根
已知二次函数y=x2+ax+a-2,设a

两个交点的距离为d=√△/a=√13b^2-4ac=13a^2-4(a-2)=13a^2-4a-5=0a=-1,a=5(舍)∴f(x)=x^2-x-3

已知二次函数y=x2+ax+a-2.

(1)令y=0,则x²+ax+(a-2)=0△=a²-4(a-2)=a²-4a+8=(a-2)²+4>0∴x²+ax+(a-2)=0总有两个实数根,即

已知二次函数y=x2+ax+a-2

设2根为:x1,x2;由已知得:|x1-x2|=√13由二次函数解析式得:x1+x2=-a;x1*x2=a-2(这是根据韦达定理)所以有,(x1-x2)^2=13=(x1+x2)^2-4x1*x2=a

若二次函数y=ax²+2x+a²-1的图像如图所示,则a的值是

过原点﹙0,0﹚代入a²-1=0a=±1∵开口朝下∴a<0∴a=-1

设二次函数y=x²+2ax+a²/2(a

AXa=(-2a)/2=-a|Ya|=|(-a)^2+2a*(-a)+a^2/2|=|-a^2/2|=a^2/2BXb=(-2a-sqrt((2a)^2-4*1*(a^2/2))/2=(-2a-sqr

一元二次函数已知抛物线Y=AX2-11/2AX+6A(A

假设存在P(x,y)抛物线的解析式为y=-1/2x^2+11/4x-3.所以A(3/2,0)B(4,0)C(0,-3)所以AC的直线方程为2x-y=3三角形ABC沿直线AC翻折,使点B与B'重合,联结

已知二次函数y=ax^2+bx+c(a

函数经过点C,所以at²+bt+c=2.①设A(x1,0)B(x2,0)根据韦达定理,x1+x2=-b/a,x1x2=c/a因为AC垂直BC,所以2/(t-x1)*2/(t-x2)=-1,即

已知二次函数y=ax平方+bx+c(a

由图像恒不在x轴下方可知:开口向上,a>0,a+b+c为x=1时的函数值,图像恒不在x轴下方,所以当x=1,y≥0又∵a<b∴b-a>0∴(a+b+c)/(b-a)≥0∴m<0,可使该式成立.

设二次函数y=ax^2+bx+c (a

a<0,抛物线开口向下.X=2最大值,即X<2是单调递增的.所以,单调递增区间(-∞,2]

已知二次函数y=x平方+ax+a-2.

我刚刚回答过∵△=a2-4(a-2)=a2-4a+8=(a-2)2+4>0,∴不论a为何实数,此方程总有两个不相等的实数根.设x1、x2是y=x2+ax+a-2=0的两个根,则x1+x2=-a,x1&

数学二次函数 已知二次函数y=x²+ax+a-2

1、判别式b^2-4ac=a^2-4(a-2)=a^2-4a+8由题可知,我们要证a^2-4a+8>0成立即,a^2-4a+8的对称轴为-b/2a=2,在对称轴上最低点为(2,4)最低点都为正,那么整

已知二次函数y=x^2+ax+a-2,求出函数的最大值或最小值

没有最大值,最小值在x=-a/2处取得最小值=-a^2/4+a-2

二次函数y=ax^2(a≠0)的图像如图所示,则不等式ax+a>0的解集是

图就是开口向上的那个,则a>0ax+a>0ax>-a解得x>-1不等式ax+a>0的解集是x>-1

设二次函数y=x^2+2ax+a^2/2 (a

顶点(-a,-a^2/2)又y=x^2+2ax+a^2/2=0x=[-2+(根号2)]a/2x'=[-2-(根号2)]a/2则B{[-2+(根号2)]a/2,0}C{[-2-(根号2)]a/2,0},

a+b=b+a a+b+c=a+(bxc) axbxc=ax(bxc) (a+b)xc=axc+bxc 运用了什么运算律

运用了加法交换定律乘法交换律乘法分配律

如图,已知二次函数y=ax^2-2ax+3(a

(1)设平移后的直线的解析式为:y=3x+b∵直线y=3x+b过P(1,4),∴b=1,∴平移后的直线为y=3x+1∵M在直线y=3x+1,且设M(x,3x+1)①当点M在x轴上方时,有(3x+1)/

若二次函数y=ax的平方+4+a-1的最小值是2,则a的值为

如果a=0则不存在最小值如果a0那么,当x=0时取到最小值f(0)=a+3=2,则a=-1综上:a=-1

初四二次函数若二次函数y=ax^2+bx+c的图像经过a(1.-3)

过点A=>-3=a+b+cax²+bx+c=12两根为6,-26-2=4=-b/a-2*6=-12=(c-12)/a联立三个方程,解得a=1,b=-4,c=0∴抛物线方程为y=x²