二重积分形式不变性

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:05:14
二重积分形式不变性
高等数学之二重积分

今天我刚刚成为专家.希望以后多多向我提问.

二重积分计算

先发一半.剩下的我慢慢算.因为确实不好积再问:嗯再答:我这有个思路。你也试试,当然我最后肯定给你做出答案,就是觉得这个题出的不好。简直是考察不定积分能力再问:极坐标做的。。再问:我应该直接表上去。这是

二重积分计算问题 

先化极坐标目的是为了用后面的f(t)I=∫dt∫f(p^2)pdp=2π∫f(p^2)pdp=π∫f(p^2)dp^2=π

一道二重积分计算问题

利用极坐标,令x=rsina,y=rcosa,r属于[0,1]a属于[0,π]原式=∫[0,π]∫[0,1](1+r^2sinacosa)/(1+r^2)rdrda=∫[0,π]∫[0,1]r/(1+

求函数的微分或导数!1,设ysinx-cos(x-y)=0,求dy解利用一阶微分的形式的不变性求得d(ysinx)-dc

(一题)从这步d(ysinx)-dcos(x-y)=0到这步sinxdy+ycosxdx+sin(x-y)(dx-dy)=0不懂是么?ysinx是两个数相乘,对它d(ysinx)时就得用公式d(UV)

二重积分, 

I=∫dx∫dy/(1+x+y)=∫dx[ln(1+x+y)]=∫[ln2-ln(1+x)]dx=ln2-∫ln(1+x)dx=ln2-[xln(1+x)]+∫x/(1+x)dx=0+∫[1-1/(1

请问谁会解这道高数题?已知e^z-xyz=0,利用全微分形式不变性求出z对x和z对y的偏导数

两边对z微分e^zdz-d(xyz)=0=e^zdz-xydz-zd(xy)=e^zdz-xydz-zxdy-zydx所以,整理两边:(e^z-xy)dz=zxdy+zydx所以:dz=zx/(e^z

利用二重积分的几何意义计算二重积分.

上式的几何意义是球x^2+y^2+z^2=1的上半球的体积(0

二重积分  

经济数学团队帮你解答,有不清楚请追问.请及时评价.

关于微分的形式不变性?一阶微分形式不变我可以理解,但是高阶微分为什么没有这种性质?中间变量不是

你看上图,一阶导数形式简单,但二阶导数是对一阶导数求导,在这个过程中,很明显复杂了很多虽然同是中间变量,但是二阶微分比一阶微分复杂多了,所以形式改变了.通俗点可以这样想:dy  &

设函数z=arctanuv u=xe^y v=y^2 ,试利用全微分形式的不变性计算 Zx' Zy'

所谓利用全微分形式的不变性计算z‘x和z'y,就是指先求出全微分dz,再根据dz=z'xdx+z'ydy求出处z'x和z'y、本题中dz=vdu/(1+u^2v^2)+udv/(1+u^2v^2),而

大学高数二重积分如何将二次积分转化为极坐标形式的二次积分,

变量和被积函数部分是套公式,极坐标积分顺序变化不多,一般总是先积r,后积θ.主要是积分区域,原积分区域是矩形,化为极坐标后,要分为曲边扇形:沿θ=π/4(y=x)把矩形分为两部分:,一部分:0≤θ≤π

化下列二次积分或二重积分为极坐标形式的二重积分,并计算积分值(39题第5小题求解)

经济数学团队帮你解答,有不清楚请追问.请及时评价.再问:先谢谢你的解答!我想问一下我的做法是先求大圆的二重积分再求小圆的二重积分最后相减,这种做法有错吗?并且我求得小圆那一块的二重积分是0.....再

高数二重积分用极坐标形式如何确定积分区域xita的角度值和r的范围

首先,你在直角坐标系中过原点作此区域函数图像的两条切线,则两条切线的角度则为极坐标系中θ的范围.(若该图像将原点包围,那一定是(0,2π)的范围)然后,在直角坐标系下不是已经已知一个关于x,y的函数关

二重积分啊!求二重积分

再问:求大神讲解下那个积分的上下限是怎么算出来的,,本人菜鸟啊,,,再答:对于直角坐标来说下方的函数为下限,上方的函数为上限对于极坐标来说若区域是只由一条曲线围成,则r的范围:下限是原点,上限是该曲线

二重积分

  被积函数是开口向下的椭圆抛物面,它与xoy面的交线是椭圆:4x^2+y^2=4 即 x^2+y^2/2^2=1.  如上图.易知 z=4-4x^2-y^2,当&nbs

二重积分 

本题中D为要积分的平面区域,要积分的函数为f(x)=1,所以其真正含义是积分区间D的面积,答案是积分区域D的面积,πr的平方.如果f(x)是一个表达式,就得按部就班的按照积分的方法算了,上面的这个只是