二阶导数大于零是凹函数?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:37:11
二阶导数大于零是凹函数?
设函数f(x)在区间(a,b)内二阶可导,f(x)的二阶导数大于等于0,证明:任意x,x0属于(a,

利用泰勒中值定理f(x)=f(x0)+f'(x0)(x-x0)+f''(t)(x-x0)²/2!t∈(x,x0)因为f(x)的二阶导数大于等于0,所以f(x)大于等于f(x0)+f(x0)的

高数函数的二阶导数 

首先F(x)在x=1处一定连续才有倒数,所以F(x)在1处的左极限和右极限分别存在切相等所以F(1-)=f(1)=F(1+)=c所以c=f(1)然后F(x)二阶可导必定1阶可导,照葫芦花飘飘推出b=f

f(x)在x0处一阶导数等于0二阶导数大于0,函数f(x)在x0处取不取得极值

首先要明白导数的意义他是描述函数走势的在x0时一阶导数为0二阶导数大于0那么表示一阶导数在x0处还是处于一个上升态势的也就是在x0的领域内一阶导单调增此时一阶导在x0处取0值表示函数在此处取极值

函数的二阶导数的几何意义

意义如下:(1)斜线斜率变化的速度(2)函数的凹凸性.

函数的二阶导数大于零与函数下凸是充要的吗

函数的二阶导数大于零是函数下凸的充分条件,但非必要条件,因为不可导的函数也允许是下凸的,如f(x)=|x|.

为什么二阶导数能判断函数凹凸性

因为随着凹凸变化,曲线的切线斜率会出现相应的改变.1在凹最低处或凸最高处,切线斜率为0,即一阶导数为02在凹图象最低处左右,一阶导数从最低处左方的>0趋于右方的0在凸图象最高处左右,一阶导数从最高处左

matlab下求隐函数二阶导数

clearallsymsxyg=sym('sin(x+y(x))=x')dgdx2=diff(g,x,2)

高等数学求函数的二阶导数

1.y'=x^2(2^x)'+(2^x)*2x=x^2*2^x*ln2+(2^x)*2xy''=(x^2*2^x*ln2+(2^x)*2x)*ln2+2x(2^x)ln2+2^x*22.y'=e^xc

求高等数学函数最值应用题 越多越好(利用一阶导数为零,二阶导数大于或小于零解)

我有很多题目,在电子书第50页开始,到66页,你如果要,我给你发过去,

函数二阶导数大于零单调性如何?原因!

二阶导数和单调性无关而是表示凹凸性二阶导数大于零则是凹函数,即图像是∪型的二阶导数小于零则是凸函数,即图像是∩型的

一个函数存在导数,并且已知该导数是单调增的,那么可否直接推出该函数的二阶导数恒大于0呢?会不会还有某些条件,诸如二阶导数

如果二阶导数存在,当然没有大问题.主要问题是,可能在部分点上,二阶倒数不存在.但是在二阶导数存在的那些地方,都是可以的;在部分点上,可能二阶导数为0.这个问题其实就是,已知一个函数是单调增的,问其导数

为什么一个函数的二阶导数大于0他原函数就是凹函数?

函数的一阶导数反映函数的单调性,二阶导数是一阶导数的求导,二阶导数大于0,说明一阶导数单增,则在一阶导数从负无穷增加到零的过程中,原函数切线斜率的绝对值不断减小,一阶导数为零时原函数切线水平,当一阶导

一阶导数大于0 二阶倒数小于0 三阶导数大于0是什么几何意义?

通俗的讲,函数(或者说曲线)在人们的一般常识中都是以三维空间来标识的,空间超过三维以后,直观的几何意义就很难去描述了.理解这个之后,再来观察函数的导数就比较容易了,以为函数具有几何意义的最高阶数是三阶

二阶导数问题,一阶导数是小于0的,二阶导数是大于0的,定义域为R,也就是说原函数的斜率是由无穷小增到0.当斜率小于零,斜

你说的那个没有错:一阶导小于0时,若二阶导大于0,则函数变化越来越慢你老师说的是另一种情况一阶导大于0时,若二阶导大于0,则函数变化越来越快归纳起来就是若二阶导大于0,则原函数:在递减区间,递减(变化

二阶导数趋于正无穷,原函数大于零,能得出一阶导数大于零的结论吗?

问题有些糊涂.所谓的“趋于”二字,总是有条件的.例如:当自变量趋于正无穷时,二阶导数趋于正无穷;当自变量无限接近于M时,二阶导数趋于正无穷;当自变量趋于负无穷时,二阶导数趋于正无穷;……………………;

求函数的高阶导数(大于一阶的导数)有什么意义?

导数也是一种函数(因为每个x对应唯一的f'(x)),那么二阶导数就是来研究这个函数变化的.比如位移的导数是速度,速度的导数是加速度(均对时间求导)

设函数f(x)具有二阶导数,且f(x)二阶倒大于0,证明:f(a+h)+f(a-h)≥2f(a)

正解是中值定理,这里不好打符号参与资料中有详解

当一阶导数等于零,而二阶导数大于零 时,为极小值点;当一阶导数等于零,而二阶导数小于零时,为极大值点

当一阶导数等于0时,这个点(设为A点)就是极点,1)若此时二阶导数大于0,说明一阶导数在A点连续且递增,那么当xA时,一阶导数大于0.,原函数递增.A点又是极点,所以此时,A为极小值点.2)当此时二阶

为什么二阶导数大于零,一阶导数也大于零?

y=-x³y‘=-3x²y’‘=-6x在x=-1处二阶导数为6一阶导数为-3所以你的命题是错的