二阶矩阵的基础解系例题
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 19:09:33
abcd矩阵的平方=0那么a^2+bc=0,ab+bd=0,ac+cd=0,bc+d^2=0若b=0,则a=0,d=0,c任意若c=0,则a=0,d=0,c任意若bc≠0,则a=-d,bc=-d^2
A=0100|A-λE|=-λ10-λ=λ^2所以A的特征值为:0,0.再问:先谢谢您的回答,可是矩阵范数的概念应该首先是矩阵A与其转至AT的乘积,如题乘积后矩阵是B一行{0,0},二行{0,1}然后
由已知,|A*|=0,A*(1,1,...,1)^T=3(1,1,...,1)^T所以r(A*)=1所以r(A)=n-1所以AX=0的基础解系含1个向量.因为AA*=|A|E=0所以3A(1,1,..
证:由A²-A+E=0A(A-E)+E=0A(E-A)=E所以A和E-A可逆,并且A的逆为E-AE-A的逆为A希望可以帮到你.
不好意思,这两天有事没上网. 齐次线性方程组的基础解系不是唯一的,两个基础解系都对只要满足:是Ax=0的解线性无关个数为n-r(A)则都是基础解系
主对调,副换号.注:主-->主对角线;副-->副对角线
应该是书印错了,等式的左边提出一个X,应该写成X(A-I)=A方-II是单位矩阵
A=1111243135244635r2-2r1,r3-3r1,r4-4r11111021-102-1102-11-->1111021-100-220000所以r(A)=3所以AX=0的基础解系含n-
|A-λE|=(2-λ)^2×(4-λ)λ=2,2,4λ=2,解(A-2E)X=0得基础解系,p1=(1,0,0)^Tp2=(0,-1,1)λ=2对应的特征向量p=k1p1+k2p2(k1,k2不同时
再问:谢谢。但是怎么确定α1、α2分别取1和0的呢?再答:这种题有一个固定的套路,当你求出x1.x2.x3的函数关系时,一般就是分别取(1,0,x3)和(0,1,x3)再问:再问:谢谢。那这个题的基础
这个式子是在计算同时选了这两个有矛盾的男士的可能.两个里面选两个,然后剩下的7-2=5个人里选一个,所以是1×5=5种可能
知识点:与齐次线性方程组的基础解系等价且含相同向量个数的向量组仍是方程组的基础解系证明:因为B可逆,所以BA的行向量组与A的行向量组等价且BA与A的行数都是m所以BA的行向量也是Cx=0的基础解系
两个矩阵都可以,事实上,(1,4,0)只是(1/4,1,0)的4倍而已.一个特征向量的非零倍还是属于同一个特征值的特征向量,故如何选择是没有关系的.再问:但是矩阵元素值变了还能保证矩阵的可逆性等性质不
1-1-1101-1-1101-10-11/2002-41002-41002-4100-24-10000000000x1-x2-x4=1/22×x3-4×x4=1令x2=c1x4=c2则111/2x=
证明:因为A的行向量是Cx=0的解所以CA^T=0.所以C(BA)^T=CA^TB^T=0所以BA的行向量也是Cx=0的解.由A的行向量是Cx=0的基础解系又因为B可逆,所以m=r(A)=r(BA)所
基础解系没有必要正负,只需一个向量就可,有正负意思应该是正负都可成为基础解系.后面的单位向量当然都应有正负.再问:哦谢谢了,那请问考试的时候只写正负的其中一个有关系吗会扣分吗还有就是什么时候应该写正负
对某个特征值λ,解齐次线性方程组(A-λE)X=0
这与已知A求A^-1是一样的这是因为A=(A^-1)^-1A=abcd利用公式A^-1=(1/|A|)A*其中:|A|=ad-bcA*=d-b-ca注记忆方法:主对角线交换位置,次对角线变负号
A是一个n阶方阵,r(A)=n-1所以AX=0的基础解系的解向量的个数为1又A的每一行元素加起来均为1则A(1,1,...,1)^T=(1,1,...,1)^T所以x=(1,1,...,1)^T是AX