二项式(1 x)^n的展开式中x^4的系数为15
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 10:43:25
研究通项即可1、由于通项中x的次数(9-r)-r=0无整数解,所以无常数项2、求展开式中x的3次方的系数,即求(9-r)-r=3的解解得r=3所以T4=-84·x的3次方所以x的3次方的系数为-84
第一问的话分奇偶讨论就好了如果是n奇数,二项式系数最大的项就是第(n-1)/2+1项和第(n+1)/2+1项如果n是偶数的话二项式系数最大的项就是第n/2+1项然后求出来就可以了.第二问第一项的二项式
T(r+1)=Cnr(2^n-r)*[x^(n-r)/2]*[x^(-r/4)]=Cnr(2^n-r)*[x^(2n-3r)]前三项的系数为:Cn0*(2^n),Cn1*(2^n-1),Cn2*(2^
n=10再问:常数项再答:45/8再答:45/16再答:上面那个错了再问:我的分母是16x16再答:你错了,C10.8×()∧4=45/16再答:鹅鹅,我口算的,你对了,,,再答:45/256再问:=
因为偶数项系数绝对值和奇数项系数绝对值相等都为2^n的一半所以n=10所以最小系数为负C10取5=-252
对于二项式展开式的二项式系数的方法:一般先写出它的第r+1项T(r+1)的表达式,再利用通项求出它r,则它的二项式系数就是C(n,r)例如:(x-1/x)^5的展开式中第r+1项T(r+1)=C(5,
若二项式(x^2+1)^n展开式的各项系数的和为64令x=1得2^n=64所以n=6所以其展开式的所有二项式系数中最大的是C(6,3)=6*5*4/3*2*1=20再问:为什么要令x=1?是不是所有题
T(r+1)=C(n,r)*a^(n-r)*b^r,(此为二项式通项公式)T(9),即有,9=r+1,r=8,(1+根号x)^n的展开式中第9、10、11项的二项式系数分别为:C(n,8),C(n,9
只有第六项的二项式系数最大可知展开式只有11项即n=10C(10,n)*(1/x)^n*(√x)^(10-n)=C(10,n)*x^(5-3n/2)展开式中含1/x^4的项即5-3n/2=-4-3n/
n=10.第四项的二次项系数是C3N,第八项是C7N,所以C3N=C7N,所以N=10.C3N=C7N=120
前三项的二项式系数分别为:1、n、所以1+n+n(n-1)/2=37,解出来为n=8,要算展开式中X四次方的系数,需要先算哪一项X是四次方可通过组合数算出为第7项,所以展开式中X四次方的系数为-28
展开式中二项式系数和为512,即有2^n=512,得到n=9T(r+1)=C9(r)*[x^1/2]^(9-r)*(2/x)^r=C9(r)x^(9/2-r/2-r)*2^r令9/2-r/2-r=0,
(2x+1)^n的展开式中各项的二项式系数之和等于2^20二项式系数即2^n所以2^n=2^20得n=20
2^2n-2^n=992(2^n+31)(2^n-32)=02^n=32n=5(2X-1/X)^10的展开式中,二项式系数最大的项为第6项C(10,5)(2X)^5(-1/X)^5
根据那个杨辉三角,可知第n行最大的二项式系数为第n/2+1个,由此可得n=8.展开式中的常数项就好做了,(x/2)^2的那项,就是c28/(2^2),第三项为展开式中的常数项.
因为是“二项式系数”所以二项式(2x+1)^2n的展开式中二项式系数和=2^2nx-3)^n二项式系数和=2^n2^2n-2^n=562^n=8n=3
答:(x²+1/x)^n二项式展开,所有系数:a0+a1+a2+...+an=64令x=1得:a0+a1+a2+...+an=(1+1/1)^n=2^n=64n=6
(1)杨辉三角,计算展开式系数kn11,11,2,11,3,3,11,4,6,4,11,5,10,10,5,11,6,15,20,15,6,1(2)通式表达,(a+b)^n=ki*a^(n-i)b^i
(1+x)^m+(1+2x)^n展开式中,x的系数为:Cm(1)+2Cn(1)=11m+2n=11m/2+n=11/2m=11-2nx^2系数为:Cm(2)+2Cn(2)=m(m-1)/2+n(n-1
二项式系数的和是2的n次方=64,则:n=6得:[x²-(2/x)]的6次方的展开式中的常数项是:C(4,6)×[(x²)²]×[-(2/x)的4次方]=240再问:麻烦