二项式定理1^2cn1 2^2cn2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 01:42:50
1能被你的2次方整除?写清楚点儿呀
用二项式定理展开(a+2b)⁶和(1-1/x)⁵.(a+2b)⁶=a⁶+6a⁵(2b)+15a⁴(2b)²+20a
由二项式定理,当a>0,k>1时,(1+a)^k=C(k,0)+C(k,1)*a+...+C(k,k)*a^k>C(k,0)+C(k,1)*a=1+na∴(3/2)^(n-1)=(1+1/2)^(n-
由二项式定理(3/2)^(n+1)=(1+1/2)^(n+1)=C(0,n+1)+C(1,n+1)*(1/2)^1+.C()而C(1,n+1)*(1/2)^1就与n+1)/2相等了所以可以得证
∵二项式(1-2x)5的通项公式为Tr+1=Cr5•(-2)r•x-r,故第四项为C35•(-2)3=-80,故答案为-80.
(n+1)²-1=[(n+1)+1][(n+1)-1]=(n+2)*n这只能被n整除,只有n=1或2时,才能被n²整除
3^2n-8n-1=9^(n)-8n-1=(8+1)^(n)-8n-1=[8^(n)+n×8^(n-1)+……+n(n+1)/2×8^2+n×8+1]-8n-1=8^(n)+n×8^(n-1)+……+
(2/3)^n-1
证明:∵(3/2)^(n-1)=(1+1/2)^(n-1)=1+(n-1)/2+(n-1)(n-2)/8+...>1+(n-1)/2=(n+1)/2>0∴(2/3)^(n-1)前两项的和1+(n-1)
x-1=t[x^10-3]/(x-1)^2=[(t+1)^10-3]/t^2=[C(10,10)t^10+C(9,10)t^9+……+C(2,10)t^2+C(1,10)t+C(0,10)-3]/t^
(n+1)^n-1=C(n,0)n^n+C(n,1)n^(n-1)+……+C(n,n-2)n^2+C(n,n-1)+C(n,n)-1=C(n,0)n^n+C(n,1)n^(n-1)+……+C(n,n-
当n=123时显然成立当n>=4时3^n=(1+2)^n>(nC0)+(nC1)*2+(nC2)*2^2=1+2n+n(n-1)/2*4=2n^2-1
解题思路:利用通项解题过程:请看附件最终答案:略
1.当n=1或2时,明显成立.当n≥3时,证明如下.(n+1)^n-1=C(n,0)n^n+C(n,1)n^(n-1)+……+C(n,n-2)n^2+C(n,n-1)+C(n,n)-1=C(n,0)n
原式=n^n+C(n,1)*n^(n-1)+C(n,2)*n^(n-2)+...+C(n,2)*n^2+C(n,1)*n=n^n+C(n,1)*n^(n-1)+C(n,2)*n^(n-2)+...+C
为解决这题,有必要引进一个加强不等式:【若n>=1n为整数,x>=-1我们有(1+x)^n>=1+nx此即为伯努利不等式证明如下:用数学归纳法:当n=1,上式成立,设对n-1,有:(1+x)^(n-1
这个没证明归纳出的公式看了吗?经验公式浅层次解释(只适用于初学,以后不能用此解释)就是从n个物中取0个进行组合,什么都不取有一种方法(就是不取!),所以是1.
N5:n*(n-1)(n-2)(n-3)/4!N6:n(n-1)(n-2)(n-3)(n-4)/5!N7:n(n-1)(n-2)(n-3)(n-4)(n-5)/6!2N6=N5+N72*(n-4)/5