交换积分顺序 根号先y 根号下2-y^2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:04:15
交换积分顺序 根号先y 根号下2-y^2
交换次序的2重积分先x到根号下pi积分cos(y^2),然后再0到根号下pi积分x.要求交换次序积分,但是不知道定积分的

这类题的关键在于画出函数的积分区域,也就是x≤y≤根号π,0≤x≤根号π画出直线y=x,那么积分区域是他于y轴,y=根号π围成的三角形,如果先对x积分,那么就是先从0到y积,然后在0到根号π积

三重积分sin根号下(x^2+y^2+z^2)除以根号下(x^2+y^2+z^2)

注意ρ代表积分变量而R是积分限,所以在ρ的积分表达式中应该是关于ρ表达式而不是关于R的,所以最后一个ρ的积分应该是∫(sinρ/ρ)ρ^2dρ,积分限都是正确的.所以应该是∫dθ∫sinφdφ∫ρsi

交换二次积分顺序 ∫(上2pi下0)dx ∫(上sinx,下0)f(x,y)dy,交换之后x的表达式是怎么判断出来的,答

再问:抱歉我没有看懂关于pai/2和3pai/2时另一边的式子的意思再答:

(x+y)/(根号下x+根号下y)+2xy/(x根号下y+y根号下x)=______.

结果为根号下x+根号下y解2xy/(x根号下y+y根号下x)分母提公因式根号下xy然后前后两式分母都含根号下x+根号下y合并后约分得根号下x+根号下y

根号下1+ x^2的积分

既要换元,又要分部,还涉循环积分.初学者有难度.

y乘以根号下(1-x^2)三重积分,积分区域由y=- 根号下(1-x^2-z^2),x^2+z^2=1,y=1围成

∫∫∫Ωy√(1-x^2)dV=∫∫∫(左半球体)y√(1-x^2)dV+∫∫∫(右圆柱体)y√(1-x^2)dV{z=rcosθ,x=rsinθ,y=y=∫(0→2π)dθ∫(0→1)rdr∫(-√

积分dx/根号下(1-x^2)

原式=∫1/(1-x)(1+x)dx=1/2∫[1/(1-x)+1/(1+x)]dx=1/2[-ln|1-x|+ln|1+x|]+c=1/2ln|(1+x)/(1-x)|+c啊,原来有根号啊应该是ar

∫(上限2分之根号2,下限0) dy ∫(上限 根号下(1-y^2),下限 y)f(x,y)dx 交换积分次序后为什么?

交换积分次序后是∫(0,√2/2)dx∫(0,x)f(x,y)dy+∫(√2/2,1)dx∫(0,√(1-x²))f(x,y)dy交换后的结果中的上下限,是由直线y=x和圆x²+y

积分上限2,积分下限0,dx/根号下x+1+根号下(X+1)^3

∫1/((x+1)^0.5+(x+1)^1.5)dx=∫1/((x+1)^0.5+(x+1)^1.5)d(x+1)=∫1/((x+1)^0.5(1+(x+1))d(x+1)=∫1/((x+1)^0.5

求反函数:y=ln(x+根号下1+x^2),还没有学过什么积分,

y=ln[x+√(1+x²)]x+√(1+x²)=e^y1+x²=(e^y-x)²1+x²=e^2y-2xe^y+x²x=(e^2y-1)/

f(x,y)是连续函数,交换二次积分∫(0,1)dy=∫(0,根号下1-y)3x^2×y^2dx的积分次序后结果是

Y型:∫(0→1)dy∫(0→√(1-y))3x²y²dxx=√(1-y)==>x²=1-y==>y=1-x²交换积分次序后是X型:∫(0→1)dx∫(0→1-

为什么-(xdx)/根号下(1-x^2)=dy/y两边积分后得根号下(1-x^2)=lny-lnc

(-xdx)/根号下(1-x^2)=(1-x^2)^(-1/2)(-xdx)=(1/2)*(1-x^2)^(-1/2)(-2xdx)=(1/2)*(1-x^2)^(-1/2)d(1-x^2)积分,得(

微积分:根号下(8-2y方)在(负根号2,根号2)的定积分

∫[-√2→√2]√(8-2y²)dy=√2∫[-√2→√2]√(4-y²)dy令y=2sinu,则√(4-y²)=2cosu,dy=2cosudu,u:-π/4→π/4

函数Y=根号下SINX分之一的积分是多少?

y=2乘根号下sinx+C(常数)再问:呃我验算了一下好像错了再答:呀~错了,没有算sinx的积分,此函数没有精确积分。给你一个数值(F,第一类椭圆积分.。常数项省略。)