(根号x 2 x²)n的展开式中只有第六项二项式的系数最大
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 11:21:36
Tr+1=T4=C(n,3)[2x^(1/2)]^(n-3)*[(-x^(-1/2)]^3.T4=C(n,3)2^(n-3)*x^[(1/2)*(n-3)]*[-x^(-3/2)]∵第四项为常数项,∴
选项C正确!令x=1,则各项系数之和为M=(1+3)^n=4^n;而各项二项式系数之和为N=2^n已知M+N=72,那么:4^n+2^n=72即(2^n)²+2^n-72=0(2^n-8)(
由二项式通项公式T(r+1)可求n=21为奇数,所中间两项的系数最大,即为第11项和第12项你要注意公式是r+1项,求出r后要加上1
T(r+1)=Cnr(2^n-r)*[x^(n-r)/2]*[x^(-r/4)]=Cnr(2^n-r)*[x^(2n-3r)]前三项的系数为:Cn0*(2^n),Cn1*(2^n-1),Cn2*(2^
展开式前三项系数分别为:Cn0,Cn1*(-1/2),Cn2*1/4化简:1,-n/2,n(n-1)/8绝对值成等差数列,即:1+n(n-1)/8=-n解得n=1(舍去)或8第四项为Cn3(x)^(5
{√x+1/[2x^(1/4)]}^n的展开式中,T=C(n,r)(√x)^(n-r)*[(1/2)x^(-1/4)]^r=C(n,r)*(1/2)^r*x^(n/2-3r/4),(1)前三项系数成等
(x)^(1/4)=y原式=(y^2+1/2y)^n展开式的前三项:y^(2n)+ny^(2n-2)(1/2y)+n(n-1)y(^2n-4)(1/2^2y^2)系数分别是:1,n/2,n(n-1)/
求项公式是这样的:Tr+1=C(n,r)a^(n-r)b^r上面的朋友有错误哦!所以正确答案是这样的:如果(a+根号a)^n的展开式中奇数项系数之和等于512即:2^(n-1)=512n=10(a+√
二项展开式中,奇数项的二项式系数之和等于偶数项的二项式系数之和.2^(n-1)=2^(2n-1)-120解得n=16.再用组合数的公式算第三项.再问:我没有想明白一式怎么可能等于二,虽然是赋值法的结论
/>只有第六项的二项式系数最大,所以n为偶数n/2+1=6,解得n=10T(r+1)=C(10,r)*(√x)^(10-r)*2^r*(1/x²)^r=C(10,r)*2^r*x^(5-5r
T(r+1)=C(n,r)*a^(n-r)*b^r,(此为二项式通项公式)T(9),即有,9=r+1,r=8,(1+根号x)^n的展开式中第9、10、11项的二项式系数分别为:C(n,8),C(n,9
只有第六项的二项式系数最大可知展开式只有11项即n=10C(10,n)*(1/x)^n*(√x)^(10-n)=C(10,n)*x^(5-3n/2)展开式中含1/x^4的项即5-3n/2=-4-3n/
∵(根号x-(2/x^2))^n其第r+1项=(-1)^r*2^r*C(r,n)x^((n-5r)/2)∵第六项系数最大,∴n=10第r+1项=(-1)^r*2^r*C(r,10)x^((10-5r)
展开式中二项式系数和为512,即有2^n=512,得到n=9T(r+1)=C9(r)*[x^1/2]^(9-r)*(2/x)^r=C9(r)x^(9/2-r/2-r)*2^r令9/2-r/2-r=0,
2^2n-2^n=992(2^n+31)(2^n-32)=02^n=32n=5(2X-1/X)^10的展开式中,二项式系数最大的项为第6项C(10,5)(2X)^5(-1/X)^5
T(r+1)=Cn(r)*x^(n-r)*(-1/根号X)^r=Cn(r)*(-1)^r*x^(n-r-r/2)第五项是常数项,即r=4时,n-r-r/2=0得到n=6展开式中各项的二项式系数和为2^
Tr+1=T4=C(n,3)[2x^(1/2)]^(n-3)*[(-x^(-1/2)]^3.T4=C(n,3)2^(n-3)*x^[(1/2)*(n-3)]*[-x^(-3/2)]∵第四项为常数项,∴
第五项与第三项的二项式系数之比为14:3即C(n,4):C(n,2)=14:3∴3*C(n,4)=14*C(n,2)∴3*n(n-1)(n-2)(n-3)/(4*3*2*1)=14n(n-1)/(2*
系数为C(k,n)/2^k=n!/k!(n-k)!*2^(-k)前三项为1,n/2,n(n-1)/8前三项为等差得到1+n(n-1)/8=nn^2-9n+8=0n=1或者8如果n=1,没有前三项,所以
(1)杨辉三角,计算展开式系数kn11,11,2,11,3,3,11,4,6,4,11,5,10,10,5,11,6,15,20,15,6,1(2)通式表达,(a+b)^n=ki*a^(n-i)b^i