什么矩阵逆矩阵等于共轭转置矩阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 13:07:58
什么矩阵逆矩阵等于共轭转置矩阵
矩阵伪逆 与 矩阵共轭转置的关系

A^+=A^*(AA^*)^{-1}需要默认A行满秩类似地,A^+=(A^*A)^{-1}A^*要求A列满秩可以认为这就是满秩矩阵的Moore-Penrose逆的定义,当然对于不满秩的矩阵仍然需要用四

线性代数中的矩阵的转置和矩阵的逆矩阵有什么区别和联系?

这是两个完全不同的概念转置是行变成列列变成行,没有本质的变换逆矩阵是和这个矩阵相乘以后成为单位矩阵的矩阵这个是一个本质的变换,逆矩阵除了一些显然的性质以外还有一些很特殊的性质,例如无论左乘还是右乘原矩

关于矩阵操作的符号对每个元素取复共轭,对矩阵转置,先对矩阵转置,再对每个元素取复共轭,分别用什么符号?

对每个元素取复共轭,符号:*对矩阵转置,符号:T先对矩阵转置,再对每个元素取复共轭符号:H

两个矩阵的分解问题1:已知矩阵A为埃尔米特矩阵和半正定矩阵,求矩阵B,使B满足:A等于B和B的共轭转置的乘积.(求解满足

我用上标^H表示矩阵的共轭转置.(1)由于A半正定,所以存在酉矩阵U,使得(U^H)(A)(U)=D其中D为对角阵,D=diag(x1,x2,...,xn).对角线元素为x1,x2,...,xn,全部

矩阵转置的n次方等于矩阵

凡是一个矩阵可表示成一个列矩阵乘该列矩阵的转置形式(A=ααT),则该矩阵A的n次方必与A差一常数倍K,其中K=tn-1,t=αTα.

怎么写出这个矩阵的共轭矩阵?

先转置再对每个元素取共轭.转置后:[-√2i4-4√2i]再取共轭:[√2i4-4-√2i]

什么情况下矩阵的转置矩阵等于其逆矩阵,能证明下吗?

矩阵A的转置矩阵A^T等于A的逆矩阵A^-1那么AA^T=AA^-1=E设A=(α1,α2,α3,...,αn)^T,其中αi为n维列向量,那么A^T=(α1,α2,α3,...,αn),α1^Tα1

实对称矩阵的逆的转置矩阵等于它的逆矩阵吗

等于,因为他的逆也是对称矩阵注意到转置和逆是可交换的,也就是(A^-1)^T=(A^T)^(-1)因为A是对称的,故(A^-1)^T=A^(-1)得证.

矩阵

解题思路:若向量a经过矩阵A变换后所得的向量为b(写成列向量),则b=Aa;本题中的A是单位矩阵,它对应的变换为“恒等变换”(即变换A将任一向量变换为自身).解题过程:解答见附件。最终答案:(2,3)

对称矩阵,正定矩阵,共轭矩阵的判定条件是什么?

对称矩阵的根据定义判定.A'=A正定矩阵的判定方法有多种,常用的有:1.各介顺序主子式均大于零2.所有的秩都大于0.共轭矩阵的判定根据定义.已经很详细了~建议你到网络上去找一找课件看看.

矩阵的共轭转置再共轭转置是不是矩阵本身?

是啊.共轭和转置是可以交换次序的.

请示例一下“矩阵的共轭转置”,数学自学者.

共轭转置是对复数上的矩阵说的,以二阶矩阵为例

矩阵乘以转置矩阵等于单位矩阵

这是正交矩阵的定义.该矩阵每列元素做成向量,都是单位向量,且列向量组之间是正交的,因此列向量组是一个正交单位向理组.同样的,行向量组也是正交单位向量组.矩阵的行列式只能是1或-1.其逆矩阵就是它的转置

什么是共轭转置矩阵基础一点,

矩阵有实数矩阵和复数矩阵.转置矩阵仅仅是将矩阵的行与列对换,而共轭转置矩阵在将行与列对换后还要讲每个元素共轭一下.共轭你应该知道,就是将形如a+bi的数变成a-bi,实数的共轭是它本身.所以,实数矩阵

线性代数中的共轭矩阵和对称矩阵有什么区别?

我估计你所说的“共轭矩阵”就是所谓的Hermite矩阵.定义:如果A(i,j)=A(j,i),那么称A是对称矩阵.如果A(i,j)=conj(A(j,i)),那么称A是Hermite矩阵.对于实矩阵而

共轭转置矩阵用什么符号表示?

一般是右上角H如:A^H有的教材A'上画一杠,'为转置,上面一杠为共扼

单位矩阵减去单位矩阵等于什么?

是等于零矩阵补充问题了,那我排最后去了等于零矩阵,是在运算有意义的前提下不同阶无法进行矩阵加减运算

证明:矩阵A的共轭转置矩阵与A的秩相同

这个可以直接用定义来证明,A^H的行秩和A的列秩相同也可以用极大非零子式来证明但是1楼的证明完全错误,从存在一个A满足r(A)=m,r(A^T)=m+1无法推出r((A^T)^T)也有同样性质.