从1-12这12个自然数中至少选几个就可以保证其中一定包括两个数他们的差是7

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 02:57:41
从1-12这12个自然数中至少选几个就可以保证其中一定包括两个数他们的差是7
从1到2009这2009个自然数中,有多少个数至少与5678相加时至少发生一次进位?

可以从两个角度去考虑(1)从它的相反面去看,然后从所有的情况减去它的相反面至少发生一次的情况等于2009个减去没有发生进位的情况即为所求的结果千位不发生进位有0,1三种情况百位不发生进位有0,1,2,

任意13个自然数中,至少有两个数的差是12的倍数,为什么?

根据抽屉原理啊12将数分成12类,分别是除12余0、1、2、3、...、11如果是13个数,必然至少有两个除以12的余数相同,也就是差是12的倍数

"连续20个自然数中至少有1个质数"这句话对吗

这是错的记21!=1*2*3*...*20*21,则连续20个自然数21!+2,21!+3,...21!+21都不是质数:例如21!+3=3*(1*2*4*5*...*21)+3=3*(1*2*4*5

从1到2002这2002个自然数中,有多少个数与5678相加时至少发生一次进位?为什么?

要发生进位,则这样的数不满足:个位数小于二且十位数小于三且百位数小于四且千位数小于五,则这样的数有2×3×4×2=48,所以,至少发生一次进位的数有2002-48=1954

从1到2005这2005个自然数中,有多少个数与5678相加时至少发生一次进位?

先算与5678相加时不进位的.设数是abcd,d=0,1c=0,1,2b=0,1,2,3d=0,1,2,3,4.因为0000不在范围里,所以就有2*3*4*5-1=119个2005-119=1886有

从1到1001这1001个自然数中,含有两个数字1的自然数共有多少个?

从1-9有0个从10-99有1个从100-200有11个,101,110、111、.119从200-999有8个再加上1001这1个,其有1+11+8+1=21个

从1~12中选出7个自然数,要求选出的数中不存在某个自然数是另一个自然数的2倍,那么一共有______种选法.

将这12个数按照2倍关系分为(1,2,4,8)、(3,6,12)、(5,10)、(7,9,11)四组,(1)如果从第一组中取出一个数,有4种取法,还需要6个数,必有3,12,7,9,11,再从第三组中

1-19999这19999个自然数中,有多少个与56789相加时,至少发生一次进位?

万位上只可以是1千位上可以是0.1.2.3百位上可以是0.1.2十位上可以是0.1个位上只能是0共1*4*3*2*1=24个数

从1到1999着1999个自然数中有多少个数与5678相加,至少发生一次进位?

不进位的选择个位是0-1十位是0-2百位0-3千位0-1总数2*3*4*2-1=47个因为要去掉0这个数发生进位的是1999-47=1952个

从1到2013这2013个自然数中,共有多少个数与四位数8866相加时至少发生一次进位?

算不可能进位的数:各位的数字可以是0.1.2.3,十位可以是0.1.2.3,百位可以是0.1,千位可以是0.1然后4*4*2*2=64然后减去0000这个数就是63个数然后2013-63=1950

从1到1999这1999个自然数中有多少个数与5678相加时,至少发生了一次进位?

与5678相加不发生进位的数有1、10、11、20、21、100、101、110、111、120、121、200、201、210、211、220、221、300、301、310、311、320、321

1——2999这2999个自然数中,有多少个与4567相加时,至少发生一次进位?

最佳方法是计算有多少数是不进位的.以0000到2999为研究范围千位可以取012百位可以取01234十位可以取0123个位可以取012即3*5*4*3=180再去掉0000,即1到2999只有179个

从1至2002这2002个自然数中,共用多少个数码2?

10*10*3*2+4=604------------------0-999共用10*10*3个1-1999共用10*10*3个2000-2002共用4个

从1,2,3,…,30这30个自然数中,至少要取出______个不同的数,才能保证其中一定有一个数是5的倍数.

1,2…30中共有5、10、15、20、25、30这6个数是5的倍数,取出24个不能保证有一个为5的倍数.24+1=25(个),所以取出25个不同的数字,才能保证其中一定有一个数是5的倍数,故答案为:

从1~12中选出7个自然数,要求选出的数中不存在某个自然数是另一个自然数的2倍,那么一共有( )种选法.

从1~12中选出7个自然数,要求选出的数中不存在某个自然数是另一个自然数的2倍,那么一共有( 0)种选法.存在的2倍的组合有(1,2)(2,4)(3,6)(4.8)(5.10)(6.12)6种情况每个

从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12

你好,根据抽屉原理,至少任选13个数,就可以保证其中一定包括两个数,它们的差是12再问:至少任选几个数?再答:13个数

从1 2 3 4...12这12个自然数中,至少任选几个,就可以保证其中一个一定包括2个数 他们的差是7

解12个自然数中差为7的自然数共有5对(125)(114)(103)(92)(81)另外,还有2个不能配对的是67可以构造抽屉原理共构造7个抽屉.只要有2个是取自同一个抽屉的那么它们的差就是7这7个抽

从1~100这100个自然数中,至少要取多少个数才能保证取出的数中至少有一个是质数?

答:1~100这100个自然数中有25个质数,74个合数,1既不是质数也不是合数.所以至少要取76个数才能保证取出的数中至少有一个是质数.