从1.2.3--50中取出若干个数,使其中
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:09:54
将这50个数按照除以7的余数分组除以7余1的:共7个除以7余2的:共6个除以7余3的:共6个除以7余4的:共6个除以7余5的:共6个除以7余6的:共6个除以7余0的:共6个只要不同时出现余1+余6、余
设抽了x次4x+16=3x*2x=8黑子有8*4+16=48个白子有8*3=24个
我们把这50个数按除7的余数划分为7类0,1,2,3,4,5,6再把这7个数划分为4类(0.0)(1,6)(2,5)(3,4)选取7类的4个类其中一类不为0则必有2个数在同一类为使类数达到最多我们选数
按除7的余数为0~6将数分成7组:1:{1,8,15,...50},8个2:{2,9,16,.44},7个...7:{7,14,.49},7个则1与6,2与5,3与4,及7本身,的数不能有一对取出在一
即把除7余1,余2,余3和一个整除7的数集合起来除7余1的数有8个除7余2的数有7个除7余3的数有7个取其中一个整除7的数有1个最多可取8+7+7+1=23个数
把这50个数按除7的余数划分为7类0,1,2,3,4,5,6;除以7,余1的1,8,15,22,29,36,43,50;除以7,余2的2,9,16,23,30,37,44;除以7,余3的3,10,17
50被7除,50/7=7.1,即余数为0、2、3、4、5、6的各有7个,1的有8个,因为1+6=2+5+3+4=7,所以,余数(1,6)、(2,5)、(3,4)中每组只能取一种,又因为余数为1的个数最
是脑筋急转弯吧50-2=48个数字
抽屉原理由于任意2数之和被7整除有以下4种可能:余数0+余数0,余数1+余数6,余数2+余数5,余数3+余数4.所以可以设置4个抽屉:1号抽屉放置除7余0的数,2号抽屉放置除7余1或6的数,3号抽屉放
把数分为7堆除7,余1的1,8,15,22,29,36,43,50除7,余2的2,9,16,23,30,37,44除7,余3的.除7,余4的.除7,余5的.除7,余6的.以及整除的会发现除了第一堆即除
首先7之前有6个数,而这6数最多可取:123,而后三个都能与前三个相加为7的倍数,依次类推:7-14之间也有6个数,而我们也只能取:8910,依次类推:可以知道下一组为:151617.为什么么呢?因为
我们把这50个数按除7的余数划分为7类0,1,2,3,4,5,6再把这7个数划分为4类(0.0)(1,6)(2,5)(3,4)选取7类的4个类其中一类不为0则必有2个数在同一类为使类数达到最多我们选数
不知道你学过排列组合的知识没.这里的数给的比较好..每个数无论是取几个数的情况都不会存在和值相等的情况.所以,取一个数有C(6)1=6种情况.两个数:C(6)2=15种.三个数:C(6)3=20种.四
这2011数中,能被7整除的数,7、14、21、28、…2009,共有287个;不能被7整除的数可以分成6类:①被7除余数是1的数,1、8、15、22、…、2010,共有288个;②被7除余数是2的数
要想取出的数最多,相邻的数的差越小越好差不能为1,2,6,最小就是差3,4,分别出现1,4,8,11,15.92,95,99从1开始,每差7,可以取两个数(92-1)÷7=13最多可取出(13+1)×
63个是1+3+9+27+81+24362个是3+9+27+81+24361个是1+9+27+81+243所以60个是9+27+81+243=360
2013÷50=40..13最多40+1=41个数
从1,2,3,.,2011中取出:1,8,15,.,2010共288个.(这些数被7除余1)再取出:2,9,16,.,2011共288个.(这些数被7除余2)再取出:6,总计取出288+288+1=5
首先去掉能被7整除的然后将余1,2,3的数相加就可以了即100以内7的倍数是100/7=14个数余1的是14+1余2的是14+1余3的是14合计44个数
由于后一个数总比前几个数之和大,因此在取后一个数之前需把前几个数的所有组合取遍.31