以AB为圆O的直径,点C在圆O上,过点C作圆O的切线交AB的延长线于点D

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:14:39
以AB为圆O的直径,点C在圆O上,过点C作圆O的切线交AB的延长线于点D
已知ab是圆o的直径 do垂直于ab于点o,cd是圆o切线,切点为c,求证角dce等于角dec

参考:如图所示,已知AB是圆O的直径,AP是圆O的切线,A是切点,BP与圆O交于点C,若D为AD中点,求证:直线CD是圆O的切线证明:【D应为AP的中点】连接AC则∠ACB=90º【直径所对

AB是圆O的直径,点C是OA的中点,CD垂直于AB交半圆于D点,以点C为圆心,CD为半径画弧交AB于E点,若AB=8

连接OD由题可知OC=2,OD=4在直角△DCO中,求得DC=2又根号3,得∠DOC=60°∴S扇形DOA=(60°/360°)*π*OD^2=8π/3∴S扇形DCE=(90°/360°)*π*CD^

已知圆O的半径为2,以圆O的弦AB为直径作圆M,点C是圆O优弧AB上的一个动点

连接AE所以AE垂直CB因为AB=2√3所以∠AOB=120°所以角C=60°在RT三角形AEC中CE/AC=cos60°=1/2(*)而三角形CED相似于三角形CAB所以DE/AB=CE/AC由(*

如图;AB为圆O的直径,C为圆O上一点,连接AC,BC,E为圆O上一点,且BC=CE,点F在BE上,CF⊥AB于D.1求

题目条件应该打错,是BE=CE(1)证明:AB是直径,∴∠ACB=90°∠A+∠ABC=90°∵CD⊥AB,∴∠BCD+∠ABC=90°∴∠A=∠BCD又∵∠A和∠E所对都是BC弧,∠A=∠E∴∠BC

在RT三角形ABC中角C等于90度,以BC为直径做圆O交AB于点D,取AC种点E,连接DE、OE.求DE是圆O的切线.

证明:因为E是AC中点,CO=BO所以OE是△ABC的中位线,所以OE∥AB,所以∠COE=∠B,.∠EOD=∠ODB,又OD=OB,所以∠ODB=∠B,所以∠EOC=∠EOD,又CO=DO,EO是公

以等腰三角形ABC的腰AB为圆O的直径的圆O交底边BC于点D

证明:(1)连接AD∵AB是⊙O的直径∴∠ADB=90°∵AB=AC∴BD=DC(2)连接OD∵BD=DC,OA=OC∴OD‖AC∵DE⊥AC∴DE⊥OD∴DE是⊙O的切线

OA是圆O的半径,以OA为直径的圆C与圆O的弦AB交于点D求证D是AB中点

证明:连接OD∵OA是直径∴∠ADO=90°∴OD⊥AB∴AD=BD∴D是AB的中点

如图,C为圆O直径AB上的一动点,过点C的直线交圆O

这道题没有具体的函数关系式这道题主要的是看我们的趋势判断能力因为这里面没有数值写不出具体的关系式只能说是一个抛物线的数值关系你们现在还没有学到高中才有的哈你也可以看看http://baike.baid

AB为圆O的直径,AC交圆O于E点,BC交圆O于D点,CD=BD,角C=70度

连结AD,则可以证明AD垂直平分线段BC.1、三角形ACD为直角三角形,且角C=70°,则角CAD=20°,所以角A=20°×2=40°;2、AC=AB,正确;3、弧AB与弧BE明显不等;4、A、B、

如图,AB为圆O的直径,点C在圆O上,过点C作圆O的切线交AB的延长线于点D,已知∠D=30

(1)连接OC,∵CD切⊙O于点C∴∠OCD=90°(1分)∵∠D=30°∴∠COD=60°(2分)∵OA=OC∴∠A=∠ACO=30°;(4分)(2)∵CF⊥直径AB,CF=43∴CE=23(5分)

AB是圆O的直径,点D在圆O上,BC为圆O切线,AD∥OC,求证:CD是圆O的切线.

连接OD,∵AB是圆O的直径,BC是圆O的切线∴∠CBO=90°∵OD=OB,CD=CB,OC=OC∴△COD≌△COB∴∠CDO=∠CBO=90°∴CD是圆O的切线再问:可是,题目并没有写CD=CB

如图,OA是圆O的半径,以OA为直径的圆C与圆O的弦AB相交于点D,连OD并延长交圆O于点E,求证:弧BE=AE

角ADO是直径OA所对的圆周角,所以是90°,即直线OD垂直于AB;连接OB,OB=OA,等腰三角形ABO中,OD是底边垂线,根据三线合一,OD也是中线,AD=BD;因为AD=BD,OD=OD,角AD

如图,AB为圆O的直径,PB为O的切线,AC//OP,点C在圆O上,OP交圆O于D,DA交BC于G(急!)

nonamehuang的第二问胡说八道,误人子弟.就像楼主指出来的那样,第二问的第一步是他编的,无法自圆其说就含糊其辞.其实正确的方法是:第一步:证等腰△FBD:∵∠BDE=∠BAD(△BDE~△BA

如图,AB为圆O的直径,C是圆O上一点,点D在AB的延长线上,且角DCB=角A

(2009•路北区三模)如图:AB为⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=∠A.(1)求证:CD是⊙O的切线;(2)如果:∠D=30°,BD=10,求:⊙O的半径.&

在三角形ABC中,∠C=60°,以AB为直径的半圆O分别交AC,BC于点D,E已知圆O半径为23求

连接AE,OD、OE,∵AB是直径,∴AE⊥BC,∵∠C=60°,∴∠CAE=30°,∴∠DOE=60°(同弧所对的圆心角等于圆周角的2倍),∵OD=OE,∴ΔODE是等边三角形,∴DE=1/2AB=

如图,点C在以AB为直径的圆O上,CD⊥AB,垂足为P,设AP=a,PB=b

(1),设圆心O,AP=a,PB=b,AB=AP+PB=a+b,连接OC,OD,OC=OD=AB/2=(a+b)/2,OP=AO-AP=(a+b)/2-a=(b-a)/2,直角三角形OPC与直角三角形