以三角形的一边AB为直径作圆O,圆O与BC边的交点恰好为BC边的中点D
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 19:09:16
连接BM,CM∵BC为直径,AD⊥BC∴∠HDB=∠HEA=RT∠∴∠HBD=∠CAD又∠HDB=∠ADC=RT∠∴△ADC∽△BDH∴DB/DH=DA/DC,即DB*DC=DH*DA又∵BC为直径,
连接OD、OE∵∠B=∠C=60°OB=OD=OE=OC∴∠DOE=60°∴等边△BOD、△OEC、△ODE∴BO=DE=EC
答案CA应为延长线段AB至C,使BC=AB=aB没说弧半径
证明圆的切线的方法:⑴、圆心到直线的距离等于半径;⑵、过半径外端且垂直于半径.此题可用第二种方法解决,即:证明DE⊥OD.证法如下:连结OD,所以AD⊥BC,由于AB=AC,利用等腰三角形的“三线合一
太简单了啊!连接OD,OE,由等边三角形OBD得BD=R,由等边三角形OEC得EC=R,由等边三角形ODE得DE=R,所以三者相等!(根据角度判断等边三角形)
解(1)证明:连接OD,OE,因为E为BC的中点,O为AB的中点所以OE平行与AC,所以∠EOB=∠BAC又∠DOE=∠ADO=∠BAC所以∠EOB=∠DOE在三角形DOE和三角形EOB中,DO=BO
证明:连接OD,OE∵AB是直径∴∠ADB=∠CDB=90°∵E是BC的中点∴ED=EB∵OB=OD,OE=OE∴△ODE≌△OBE∴∠ODE=∠OBE=90°∴DE是⊙O的切线
奇怪的题目:先证明KG重合由EG=2GF,EF垂直AB于AB点F,得知AB为EG中垂线,又有AB为直径,E为圆上一点,知G也在圆上,而K是圆和AH交点,故知K和G重合.接下来证明角EAB=30度.由于
看不到图,只能按照自己理解的图给你解答了:1.连接0d,因为bo=1/2babd=1/2bc角b共用,可知三角形bod和bac相似,从而角bdo=角c由此可得od和ac平行de是切线,od是半径则两者
连接BD,作CM⊥AE于点M,易得∠E=∠BCM∵AB是直径∴∠ADB=90°∴AD=CD=4∵AB=5∴BD=3∴sinA=3/5∴CM=8sinA=24/5=4.8∵BC=5∴cosE=cos∠B
改正题目,应是已知AB=BC(1)因为AB=BC所以角A=角C又因为OA=OB所以角A=角ABO所以角C=角ABO所以OD平行于BC又因为DF垂直于BC所以OD垂直于DF直线DE是圆O的切线先给第一问
取AB中点F,则FD=FB,FD垂直DE角FBD=角FDB,角A=角ADF角FBE=角FDE=90度1故角EBD=角EDB故BE=DE2故角ADF+角DEC=90度,又角A+角C=90度故角EDC=角
1.证明:连接AD,AB为直径,则∠ADB=90°.即AD垂直BC;又BD=DC.故AB=AC.(线段垂直平分线上的点到线段两个端点距离相等).即三角形ABC为等腰三角形.2.连接BE,同理可证:BE
证明:设这里的切线交AC于F,并设半圆的圆心是O依题意,EF垂直于ACOE也垂直于AC(切线)所以,EF平行于OE因为O是BC的中点所以OE是三角形ABC的中位线所以OE=1/2ACOE=1/2BC(
解题思路:切线的性质、相似三角形的判定与性质.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.解题过程:
1)证明:连CG,因为BC是直径所以∠BGC=90°因为EF⊥AB所以CG∥EF所以AC/AF=AG/AE因为AE=AD所以AC/AF=AG/AD因为AD是圆的切线所以AD²=AG*AB即A
2)AD=DC=AO=2=BC/2DF=CD*sinC=√33)CF=EF=1/2CD=1S三角形DEF=1/2*DF*EF=√3/2
(1)连接AD,则角ADC=90度,因为AB=AC,所以D为BC中点,连接OD,因为O为AC中点,所以OD//AB,因为DM为切线,所以角ODM=角BMD=90度,又角AEC=90度,所以DM//CE
证明:连接AP∵AB是⊙O的直径∴∠APB=90°∵AB=AC∴BP=CP(等腰三角形三线合一)∵AO=BO∴OP是△ABC的中位线∴OP//AC∵PD是⊙O的切线∴PD⊥OP∴PD⊥AC