任何大于7的奇数都可以表示成3 个素数之和
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 03:02:26
这个问题实在.我晕哦 哥德巴赫猜想 我们容易得出: 4=2+2,6=3+3,8=5+3, 10=7+3,12=7+5,14=11+3,…… 那么,是不是所有的大于2的偶数,都可以表示为两个素
1.Longinitial=6(first>5)2.Longinitial+=2;3.int[]a=int[]functionfindx(){//找1----Longinitial素数}LOOPi;i
显然楼主在开玩笑,这是著名的“哥德巴赫”猜想,至今世界上都没有解决.我国数学家王元两次推进证明,陈景润的证明是世界领先的,但也没有证明出来.
这句话是正确的
任何一个大于2的偶数都可以分成两个质数的和.12只能是12=(5)+(7),12=11+1,但1即不是质数,也不是合数,只能分成5+7=12其它有:14=11+3,15=13+2,16=13+3.12
3n(n为整数)
任何一个有理数都可以用数轴上的【一个点】表示,正数用原点【右侧的点】表示,负数用原点【左侧的点】表示,数0用【原点】表示.希望我的回答帮得到您,来自【百度懂你】团队,
首先任何数都可以表示成6k,6k±1,6k±2,6k±3而6k,6k±2,6k±3均为合数(大于三)则一个大于三的质数都可以表示成6k±1的形式
把出这题的人吊在树上用鞭子抽.藐视科学也要有个限度...
判断:1."5"这个数可以表示5个也可以表示第5.(对)2.假分数都大于真分数.(对)3.任何数都大于它的倒数.(错)4.整数和小数每相邻两个记数单位间的进率都是10.(对)5.没有最大的自然数.(对
哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士.1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和.
因为是五个连续的自然数的和,所以这个数字一定能被5整除所以个位数字一定是5或0又他们的和可以表示成两个都大于5的连续奇数的积,所以个位数字不是0,只能是5所以最小的和是13*15=195所以5个数字分
A*A^(-1)*B=B不知大看明白没,挺简单的补充下:A^(-1)*B=C,那么AC=B
97+3=10089+11=10083+17=10071+29=10059+41=10053+47=100
1742年,德国数学家哥德巴赫提出:每一个不小于6的偶数都是两个奇素数之和;每一个不小于9的奇数都是三个奇素数之和.我们容易得出:4=2+2,6=3+3,8=5+3,10=7+3,12=7+5,14=
拜托,这个是世界著名的歌德巴赫猜想,全世界没有人能证出来,你觉得,
哥德巴赫猜想的第一部分,也是最核心的一部分.注:公元1742年6月7日德国的业余数学家哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:(a)任何一个大于6之偶数,
#includeguest(intn);voidmain(){longa,t,i;intn;for(n=6;n
programpyy;varn,i,k:integer;beginreadln(n);write(n,'3=');k:=n*n-n+1;write(k);fori:=2tondobegink:=k+2