任意取12个自然数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 03:21:56
取4个贝因为自然数中除以3后得的余数无非就是0、1、2.共3种余数.它就像3个抽屉.只有放进4个数,才能保证一个抽屉里有2个数.而这两个数的差就能被3整除.
(1)设x1,x2,x3,x1007是1,2,3,2008中任意取出的1007个数.首先,将1,2,3,…,2008分成1004对,每对数的和为2009,每对数记作(m,2009-m),其中m=1,2
这6个自然数,都除以5的话余数可能有0,1,2,3,4这5种情况.根据抽屉原理,必然有2个数除5后余数相同,所以2者的差必然是5的倍数.
你的题目不太清楚因为是十进制,任意取11个数,至少有2个数的个位数相同,那么这两个数的差就是10的倍数
8个再问:为什么呢再答:自然数被7除后的余数只能是0,,1,2,3,4,5,6七种情况之一,8个自然数中保证有2个数被7除后的余数,那么这两个数的差就是7的倍数。再问:从任意的5个整数中,一定可以找到
自然数除以7的余数为:0、1、2、3、4、5、6,因此7就把自然数分成了7类,即:除以7余0、1、2、3、4、5、6,因此,可以把它看成是7个抽屉,至少要有8个数,才能必然有一个抽屉里有两个数,而这两
整除11有余数012345678910还有一个余数必须在0到10之间得证
C(n,3)=n*(n-1)*(n-2)/6
自然数被11除的余数只可能为{0,1,2……,10}11种情况所以12个数中必有少有两个自然数被11除的余数相同再问:被11除一个数是除以11还是11除以一个数再答:除以11
【思路】不同的自然数被7除,其余数可能不同,也可能相同(但任意所取的不同自然数,不能保证余数相同).除数一定、两被除数相减的实质是商相减余数也相减.只有当两个余数的差为0时,这两个被除数的差才能被7整
解题思路:正难则反解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.ph
从反面入手,比如1.3/1.7/很差就可以知道有多少个,然后2.6/2.10同样很差,一直到4,因为5等于1加4嘛,不过最后记得除去重复的.方法就这样!再答:很差改为等差。
2013÷4=503…………1一个数被4除的结果只能是余1、余2、余3、整除,共有4中情况.在这2013个数中:被4除余1的有504个;被4除余2的有503个;被4除余3的有503个;整除的有503个
是偶数无论第一个数是奇数还是偶数这100个数都是50对(每对1个奇数1个偶数)1个奇数+1个偶数=奇数奇数*偶数=偶数(即奇数*50=偶数)
设N为自然数,我们可以将N写成N=13n+1;13n+2;13n+3;13n+4;13n+5;13n+6;13n+7;13n+8;13n+9;13n+10;13n+11;13n+12;13n.所以自然
因为在这连续的六个自然数最大的自然数减最小的自然数刚好相差五位
解:∵1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90=(1-1/2)+(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+(1/5-1/6)+(1/6-1
C(10,30)*A(10,10)=[(30*29*28*27*26*25*24*23*22*21)/10!]*10!=30!/20!再问:结果,我对阶乘不了解,麻烦帮忙算一下,不胜感激再答:30!=
因为只有4,6,8,9,10共5个合数,取六个,那肯定要去质数了,则必有两个是互质数.
一个自然数,除以11的余数,可能为0,1,2,3,…10;一共有11种情况;把11种情况,看做11个抽屉;12÷11=1…1,1+1=2;答:至少有两个自然数除以11的余数相同.