任意菱形的中点四边形是矩形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:48:43
平行四边形.因为:对边分别等长(长度都是等于对角线的一半)的四边形.
证明:因为ABCD是菱形,所以AB=DA,BC=CD且AC垂直BD,又因为EFGH为其各边中点,所以EF∥=AC∥=GH;EH∥=BD∥=FG;∠ABD+∠BAC=90,所以∠FEH=90,所以四边形
都为菱形再问:要解答或程再答:最后者是矩形再问:再问:我知道,我要的是这样的过程再答:矩形因长和宽不等构成的图形的同旁内角必定不相等,故为一般菱形。(勾股定理)再答:同理,但因为正方形等边长,故构成的
平行四边形的中点四边形是平行四边形,矩形的中点四边形是菱形,菱形的中点四边形是矩形,正方形的中点四边形是正方形.任意四边形的中点四边形是平行四边形,由三角形中位线定理得到的.决定因素不对角线,原四边形
原四边形的中点四边形是平行四边形,平行四边形的中点四边形是平行四边形,矩形的中点四边形是菱形,菱形的中点四边形是矩形,正方形的中点四边形是正方形等腰梯形的中点四边形是菱形.
只要是两对角线相互垂直的就可以
(1)连接平行四边形对角线利用中位线性质所得顺次连接平行四边形各边中点的四边形对边分别为平行四边形对角线的0.5倍也是平行四边形(2):四边形ABCD的各边中点依次为EFGH.EF为三角开ABD的中位
选B,分析:由中位线定理易得EH、FG都平行等于BD的一半,故可得四边形EFGH为平行四边形,从它的对角线互相垂直,则矩形可证.
在菱形ABCD上取各边AB,BC,CD,DA中点为E,F,G,H,连接EF,AC,EH,BD,因为E,F是中点,所以有EF向量=1/2(AB向量+BC向量)=1/2(AC向量),同理得FG向量=1/2
知:菱形ABCDABBCCDDA的中点分别为EFGH因为EH//BD且等于1/2BD又FG//BD且等于1/2BD(根据三角形中线原理)所以EH=BD所以EFGH为平行四边形又因为AC垂直BD所以EF
连接两条对角线根据中位线,可得四边形为平行四边形两条对角线相等,根据中位线也可得到四边相等所以得到菱形
对角线相等则大四边形为平行四边形.连它的两对角线把大四边形分成两个全等的三角形,因为都是中点所以小四边形每边都是对应三角形的中位线,这样易证小四边形是平行四边形,又对角线相等,AC=BD,所以1/2A
证明:连接BD,AC.∵矩形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,∴AC=BD,∴EF=12AC,EF∥AC,GH=12AC,GH∥AC同理,FG=12BD,FG∥BD,EH=
平行四边形正方形菱形矩形
已知:如图,E、F、G、H分别为矩形ABCD四边的中点.求证:四边形EFGH为菱形.证明:连接AC、BD,在△ABD中,∵AH=HD,AE=EB∴EH=12BD,同理FG=12BD,HG=12AC,E
当原四边形对角线互相垂直时.再问:有没有过程再答:不好意思,应该是当原四边形对角线相等时。顺次连接任意四边形各边中点,那么证明新四边形是平行四边形用【两组对边分别相等】(三角形中位线定理)那么如果原四
(一)、矩形的是菱形;中点连线是平行于对角线的中位线,两条对角线不一定垂直,但对角线是相等的,所以是菱形.(二)、正方形的是正方形对角线相等,中位线也相等,对角线相互垂直,中位线也垂直,所以是正方形,
已知:矩形ABCD,E、F、G、H分别是AB、BC、CD、AD中点.求证:四边形EFGH是菱形.证明:∵E是AB中点 F是BC中点∴EF‖AC EF=1/2
中点连线是三角形中位线所以分别和对角线平行所以是平行四边形
画一个菱形ABCD,连接对角线AC,BD,连接各边中点E,F,D,G.∵E是AB的中点,F是BC中点∴BE/AB=BF/BC=1/2又∵∠FBE=∠FBE∴△BEF∽△BAC∴EF‖AC同理GD‖AC