伴随矩阵等于转置 行列式为1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 13:59:02
|(3A)^(-1)-2B|=|A^(-1)/3-2B|=|A*/(3|A|)-2A*|=|-4A*/3|=(-4/3)^4.|A*|=(256/81)*(1/2)^3=32/81
A/d再问:我也算的这么多再问:但答案不是这个再答:那是什么再问:后面还有个-3不知道怎么来的再答:矩阵-3?是不是答案错了再问:不知道,可能是吧,我到时问问老师再答:别忘了告诉我结果^O^再问:Ӧ�
\x0d\x0d\x0d去我空间里相册看看,还是有些有用的东东的.
A*这个记号不是很规范的记号,我用adj(A)来写首先考虑A可逆的情况Aadj(A)=det(A)I两边取行列式得det(A)det(adj(A))=det(A)^n所以det(adj(A))=det
证明:因为AA*=A*A=|A|E,两边取行列式得|AA*|=||A|E|,|A||A*|=|A|^n,而A非奇异,|A|≠0,所以|A*|=|A|^(n-1)
直接打格式不好编辑,我手写了答案,你看图片吧.再插一句:给矩阵乘一个系数相当于给每个元素都乘以这个系数,而给行列式乘一个系数则是给一行或是一列乘以这个系数.
AA*=|A|E|AA*|=|A|^n再问:�Ҿ�����Ϊʲô|A|��|A*|=|A|^n再答:���|A|�ᵽE����ȥ����ᷢ�ִ����ϵ����µ�һ������|A|,����|A|
(A*)^T的第(ij)元素=A*的第(ji)元=aji的代数余子式=A^T的第(ij)元的代数余子式=(A^T)^*的第(ij)元.
A*A=|A|E=-E,所以A*=-A^(-1),又因为A的转置乘以A等于E,所以A^(-1)=A的转置,带入前面的式子不就是-A嘛
还记得行列式的代数余子式的概念和性质吧.行列式A的元aij的代数余子式Aij行列式A的第i行(或列)与它对应的代数余子式的积=|A|行列式A的第i行(或列)与其它行(或列)对应的代数余子式的积=0矩阵
AA*=det(A)E则det(A)det(A*)=(det(A))^n故det(A*)=(det(A))^(n-1)
经济数学团队帮你解答,有不清楚请追问.请及时评价.
用反证法.假设|A*|≠0,则A*可逆.由AA*=|A|E=0等式两边右乘A*的逆矩阵得A=0.所以A*=0所以|A*|=0.这与假设矛盾.故当|A|=0时,|A*|=0.
由AA^T=2E得|A|^2=2^4=4^2又因为|A|
首先,当n>1,关于伴随矩阵的秩,有如下结果:若r(A)=n,则r(A*)=n;若r(A)=n-1,则r(A*)=1;若r(A)证明:当r(A)=n,有A可逆,|A|≠0.于是由A*A=|A|·E可得
看这个证明里的(2)再问:能把照片发到邮箱里吗?我是手机党,看不清楚,下载了几次都没成功!谢谢。再答:已发
应该是|A*|=|A|^(n-1)讨论一下,若r(A)=n,则AA*=|A|E,故|A||A*|=|A|^n,即|A*|=|A|^(n-1).若r(A)
公式:|A^T|=|A|,|A^(-1)|=|A|^(-1),|A*|=|A|^(n-1),书上都有计算公式,需要记住.|kA|=k^n*|A|