何如判断积分区域是X型还是Y型

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:36:40
何如判断积分区域是X型还是Y型
求二重积分∫∫[(x+y)ln(1+y/x)]/[根号下(1-x-y)] dxdy 积分区域是x

看边界线,原区域的边界必定对应新坐标系中区域的边界线.x+y=1==>u=1y轴(x=0)==>v=0x轴(y=0)==>u-v=0所以,新区域的边界线为u=1,v=0,u-v=0在新坐标系(u横v纵

求二重积分,被积函数是e……(y/x+y),积分区域是x+y=2,x轴,y轴围成的三角形内.

选用极坐标系,积分区域D:0≤θ≤π/2,0≤r≤2/(sinθ+cosθ)I=∫[0,π/2]dθ∫[0,2/(sinθ+cosθ)]e^[sinθ/(sinθ+cosθ)]*rdr=∫[0,π/2

第三题,如果被积函数是x的话.为什么结果是0呢?因为积分区域关于y对称么?

2,举例即可.取a=1/n,则∑(-1)^na收敛.∑a=1+1/3+1/5+...=(1/2)[2+2/3+2/5+...]>(1/2)[1+1/2+1/3+...],故发散;∑a=1/2+1/4+

判断题:定积分的基本要求是被积区域有限和被积函数有界.是 正确 还是 错误?

正确,若是被积区域无限和被积函数无界则为反常积分

高数的定积分问题 由曲线和直线在直角坐标系中围成一个平面图形 求问 如何判断这个图形是X型区域还是Y型区

在围成区域内任意作x轴垂线,如果与直线和曲线恒保持各有一个交点,就可按X型区域求面积(积分);在围成区域内任意作y轴垂线,如果与直线和曲线恒保持各有一个交点,就可按y型区域求面积(积分),如果都满足,

曲面积分zxdxdy+xydydz+yzdzdxξ是坐标轴和x+y+z=1所围成的区域外围

再问:能再问个题吗。。再问:再问:麻烦教一下过程。谢谢了

曲面积分 (x^2+y^2)dS 积分区域是z=x^2+y^2以及平面z=1围成

∫∫Σ(x²+y²)dS=∫∫Σ1(x²+y²)dS+∫∫Σ2(x²+y²)dS=∫∫D(x²+y²)√(1+4x

二重积分dxdy,积分区域是一个椭圆,被积函数是Y的平方,那么先对X积分,在对Y积分,和先对Y积分,在对X积分,结果不一

应该是一样的啊,只是计算的复杂性不一样,另外可以用奇偶性和对称性来简化计算

积分∫∫xy^2dy,其中积分区域 x 上限是2,下限是0;y 上限是x,下限是0;求计算过程

∫dx∫xy^2dy=∫x*1/3*y^3(0->x)dydx=1/3*∫x^4dx(x,0->2)=1/3*1/5*x^5(0->2)=32/15

二重积分确定上下限二重积分,积分区域是由抛物线Y平方=X和直线Y=X-2确定的,我先对X积分,那积分上下限分别是Y平方和

对X积分分两段((1,-1)前的是y=-根号x和y=根号x为下上限交点后是,y=根号x和y=x-2再问:我是先对X积分,你那是先对Y积分了

计算曲线积分I=∫(-x^2y)dy+xy^2dy,其中L是区域D={(x,y)|x^2+y^2

应用格林公式,第一个积分号的上下限为0和π,第二个积分号为0到2cos#,答案为1.5π再问:为什么是0到2cos#重点的过程

计算三重积分∫∫∫(y^2+z^2)dv,积分区域是y^2=2x绕x轴旋转一周后和x=5形成的闭区域

采用柱坐标:x=x,y=rcosθ,z=rsinθ;dV=rdrdθdx;所以∫∫∫(Ω)(y^2+z^2)dV=∫(0→5)dx∫(0→2π)dθ∫(0→√(2x))r^2rdr=2π∫(0→5)d

请问三重积分轮换对称的积分区域满足条件时,x,y,z是怎么换呢?

只要是来“轮着换”即可,例如x+y+z=a,把x换成y,y换成z,z换成x,方程不变,即方程有轮换对称性.再问:意思是要换都得换?再答:没错,按顺序把所有的都换一遍即可。

二重积分y-x-2,积分区域是椭圆,x^2/a^2+y^2/b^2=1

椭圆关于x轴和y轴都对称而被积函数中的x,关于y轴为奇函数;y,关于x轴为奇函数所以∫∫(y-x)dxdy=0剩下的∫∫(-2)dxdy=-2∫∫dxdy=-2*椭圆面积=-2πab所以∫∫(y-x-

二重积分如何确定X型区域还是Y型区域

其实很简单,你只要看积分区域:1:如果该区域一个x对应了几个y,那么为x型区域;2:如果该区域一个y对应了几个x,那么为y型区域;3:如果一个区域既有x型又有y型,则需分开考虑.

还有当积分区域关于y=x对称时,被积函数f(x,y)=f(y,x),是为什么?

即将x与y交换结果不变,因为二重积分与积分变量无关嘛,当积分区域关于y=x对称时,被积函数f(x,y)换为f(y,x),你会发现积分区域正好变为关于y=x对称的.

计算曲线积分∮(x^3+xy)dx+(x^2+y^2)dy其中L是区域0

原积分=∫(0到1)(1+y^2)dy+∫(1到0)(x^3+x)dx+∫(1到0)y^2dy+∫(0到1)x^3dx=4/3-3/4-1/3+1/4=1/2.