余弦函数围绕x轴旋转一周的体积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 23:16:06
余弦函数围绕x轴旋转一周的体积
y的平方=x.x的平方=y.图形绕y轴旋转一周的体积

S=∫(0,1)[x(1/2)]dx-∫(0,1)[x^2]dx=[2/3(x^(3/2))-1/3(x^3)](0,1)=2/3-1/3=1/3V=π∫(0,1)[x]dx-π∫(0,1)[x^4]

曲线y=sinx(0≤x≤π)绕y轴旋转一周得到几何体的体积是.

其实每一个截面是一个环形,这个环形的大圆半径是π-arcsiny,小圆半径是arcsiny环形面积是π(π²-2πarcsiny)积分得到V=∫0~1[π(π²-2πarcsiny

求 y=x^2,x=1,x=2,y=0,所围的图形的面积S,绕x轴旋转一周的体积

利用定积分的几何意义:S=x^2在[1,2]上的定积分=(x^3)/3在x=2与x=1处的函数值之差=7/3旋转体的体积计算公式:V=π×[(x^2)^2]在[1,2]上的定积分=π×[(x^5)/5

求由椭圆方程绕X轴旋转一周而成的旋转体(称旋转椭球体)的体积

所求体积=2∫πb²(1-x²/a²)dx=2πb²[x-x³/(3a²)]│=2πb²(a-a/3)=4πab²/3.

求圆(x-5)^2+y^2=16绕y轴旋转一周生成的旋转体的体积

答:x=5±√(16-y^2)且关于x轴对称,所以V=2π∫0到4[(5+√(16-y^2))^2-(5-√(16-y^2))^2]dy=2π∫0到420√(16-y^2)dy=40π∫0到4√(16

求椭圆x2/a2 + y2/b2 =1饶x轴旋转一周而成的旋转提的体积(高数)

[(a^2)x-(x^3)/3]的导数是[(a^2)-(x^2)]所以V=2∫πb方/a方(a方-x方)dx=2πb方/a方[(a^2)x-(x^3)/3]|(从0到a)=4/3πab方

由y=1/x,y=x,x=2及x轴围成的图形绕x轴旋转一周所得旋转体的体积

所求的旋转体体积V=∫(0,1)πx^2dx+∫(1,2)π(1/x)^2dx=π(x^3/3)|(0,1)-π(1/x)|(1,2)=π/3-π/2+π=5π/6

三个直角三角形如图放置,它们围绕固定直线旋转一周形成几何体,求出它的表面积和体积

旋转体的体积=2*2*3*π/3+4*4*3*π/3+6*6*3*π/3=56π旋转体的表面积=(134.92+56)π=599.795

地球围绕太阳旋转一周所用的时间叫做一{ }

地球围绕太阳旋转一周所用的时间叫做一(年).地球自转一周叫一天,月球绕地球一周叫一月

曲线x平方+y平方=1(y≥0)绕x轴旋转一周所得的集合体体积为

直接用球体积公式就可以了!4/3pi!再问:怎么会是球呢我没搞懂他是怎么转的能画个图吗?再答:原来的曲线是个上半圆,绕着其直径转一圈啦!

计算由椭圆x^2/a^2十y^2/b^2=1 所围绕成的图形绕x轴旋转一周而成的旋转体(叫做旋转椭

(1)设:X=x/a,Y=y/bS=∫∫dxdy(其中x从-a到a,y从-b到b)=ab∫∫dXdY(其中X从-1到1,Y从-1到1)=ab*半径为1的圆的面积=πab(2)设:椭球方程x^2/a^2

定积分!旋转体的体积,正弦函数,0到2派内 ,绕与y轴平行的直线旋转一周(如x=-派)

简单方法是用古鲁金第二定理,求出一拱的面积,再仿一个圆环的体积公式,即截面圆面积乘2πL,相当于把大圆环拉直成一个圆柱,其高就是2πL,L是截面圆心至圆环中心距离,因是绕Y轴,摆线形心肯定在中心轴线上

求y=x的三次方与x=2,y=0所围成平面图形的面积,并求他绕Y轴围绕一周旋转的体积.

答:y=x^3x=2y=0积分区间[0,2],积分函数f(x)=x^3-0=x^3平面图形面积:S=(0→2)∫x^3dx=(0→2)(1/4)x^4=4y=x^3与x=2的交点为(2,8)y=x^3

阴影部分绕x轴旋转一周所得几何体的体积

V=∫(下限0上限1)π(y1)^2dx+∫(下限1上限2)π(y2)^2dx.其中,y1=根号下2px,y2=-(根号2)x+2倍根号2.道理是取很小一段dx,则绕x轴旋转后得一圆盘高dx,底面半径

曲线y=sinx(0≤x≤π)绕y轴旋转一周得到几何体的体积是

取旋转体的与x轴垂直的圆形薄圆盘,其厚度为dx,则薄圆盘的体积为pi*(y^2)dx,即为pi*(sinx)^2*dx,对其取0到pi的定积分即为旋转体体积.结果为((pi)^2)/2

y=|x|和y=3围成的封闭图形绕y轴旋转一周所得几何体的体积与绕x轴旋转一周所得几何体的体积比是

1:1绕Y轴旋转的体积为:底面半径为3,高为3的圆锥体体积,即为1/3的圆柱体积(底面半径为3,高为3)绕X轴旋转的体积为:一个底面半径为3,高为3的圆柱体积减去两个底面半径为3,高为3的圆锥体体积,

如图,OA是圆锥底面中心O到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角的余弦值为(

如图,设OB=1,则OD=ctgθ,AC=AD•sinθ,OD•cosθsinθ=cos2θ,V圆锥DBB′=π3ctgθ,V圆锥OAA′=13DO•πAC2=13ctgθ•πcos4θ,由题意知co