例2.如图,在⊙O中,半径OA=6cm,C是OB的中点,,求阴影部分的面积.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:44:06
例2.如图,在⊙O中,半径OA=6cm,C是OB的中点,,求阴影部分的面积.
如图,在圆O中,OA⊥OB,C是AB弧上的一点,CD⊥OA,CE⊥OB,D,E为垂足.若圆O的半径为7.求DE的长度.

由OA⊥OB,CD⊥OA,CE⊥OB得四边形DCEO是矩形连接OC所以OC=DE因为OC是为径,即7所以DE=7

如图,在△ABC中,c=90度,AD是∠BAC的角平分线,O是AB上一点,以OA为半径的⊙O经过点D,交AC于点E&nb

1,.连接od,因为角oad=二分之一的弧df,所以角dof=弧df,因为2角oad=角oda,所以oa=ob,所以bc是圆o的切线 2,连接ed,因为角dae=角oad,ad=ad,角od

如图,已知在△OAB中,OA=OB=13,AB=24,⊙O的半径长为r=5.判断直线AB与⊙O的位置关系,并说明理由.

相切.证明:取AB中点C,连接OC.OA=OB,所以OC垂直于AB.Rt三角形OAC中,OA=13,AC=12.由勾股定理得,OC=.5.又圆O的半径也是5.所以AB与圆O相切.

如图,在⊙O中,AB为弦,C为弧AB的中点,OC交AB于D,AB=6cm,CD=1cm,求⊙O的半径OA.

∵C为弧AB的中点,∵AB⊥OC,∵AB=6cm,∴AD=12AB=3cm,设OA=r,则OD=r-CD=r-1,在Rt△AOD中,∵OA2=AD2+OD2,即r2=32+(r-1)2,解得r=5.

如图在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径

(1)因为角C=90度,OD⊥BC所以OD//AC,OD/AC=OB/AB设⊙O半径=r即OD=OA=OF=OE=r又AC=6,AB=10故:BC=10所以r/6=(10-r)/10解得:r=15/4

如图1,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=23.动点O在AC边上,以点O为圆心,OA长为半径的⊙O

(1)相切;证:OD=OA,所以角ODA=角A=30度;所以角COD=60度;因为D在中点,所以CD=AD;所以角OCD=角A=30度;所以角ODC=90度;所以OD垂直于CD,得证.(2)有正弦定理

(2012•东城区二模)如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,

(1)直线CE与⊙O相切.…(1分)理由:连接OE,∵四边形ABCD是矩形,∴∠B=∠D=∠BAD=90°,BC∥AD,CD=AB,…(2分)∴∠DCE+∠DEC=90°,∠ACB=∠DAC,又∠DC

如图,在⊙O中,半径OA⊥OC于O,B是OC延长线上一点,弧AD=2弧DC,求∠B的度数

连接OD,∵弧AD=2 弧DC∴<AOD =2<COD∵OA⊥OC∴<AOD+<COD=90º∴<AOD=60º∵三角形OAD中,

已知如图,在Rt△AOB中,∠O=90°,OA=6,OB=8,以O为圆心,以OA为半径做圆交AB于C,求BC的长.

作OD⊥AB于点D则AD=CD根据勾股定理可得AB=10易证△AOD∽△ABO∴AO²=AD*AB36=AD*10AD=3.6∴AC=7.2∴BC=10-7.2=2.8

已知如图,在Rt△AOB中,∠O=90°,OA=6,OB=8,以O为圆心,以OA为半径作圆交AB于C,求BC的长.

过O作AB的垂线OD,垂足为D,连接OCOA=6,OB=8,则OC=6,AB=10,OD=4.8设BC=X,则AC=10-X在直角三角形AOD中,有OA=6,OD=4.8,AD=AC/2=(10-X)

已知,如图,在圆O中,半径OA⊥OB,BC//AD 求证AC⊥BD

证明:∵BC平行AD.∴∠DAC=∠BCA=(1/2)∠AOB=45度;又∠ADB=∠BCA=45度.∴∠ADB+∠DAC=90度,故AC⊥BD.

如图,在圆O中,半径OC垂直于直径AB,E,F分别在OA,OC上,且OE=OF,求证:CE⊥BF

证明:延长BF交CE于H∵OC⊥AB∴∠COA=∠COB=90∴∠ECO+∠CEO=90∵OC=OB、OE=OF∴△CEO≌△BFO(SAS)∴∠FBO=∠ECO∴∠CHB=∠FBO+∠CEO=∠EC

如图在圆O中半径OA垂直于弦BC垂足为DOD=4 AD=1求BC和AB的长

连接OB∵OA⊥BC∴垂径定理:BD=CD=1/2BC∵OB=OA=AD+OD=1+4=5∴OB²=BD²+OD²5²=BD²+4²那么BD

如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D.

证明:如图,连接OD.设AB与⊙O交于点E.∵AD是∠BAC的平分线,∴∠BAC=2∠BAD,又∵∠EOD=2∠EAD,∴∠EOD=∠BAC,∴OD∥AC.∵∠ACB=90°,∴∠BDO=90°,即O

如图,在⊙O中,弦AB等于半径,延长OA到C,使AC=OA.(1)求证:BC是⊙O的切线;

1、证明:因为AB=OB=OAAC=OA所以BA=1/2OC所以∠CBO=90°又因为OA=OB=AB所以三角形ABO是等边三角形所以∠ABO=60°所以∠CBA=90°-60°=30°=1/2∠BO

如图,在⊙O中,弦AB等于半径,延长OA到C,使AC=OA.

AB=OA=OB三角形OAB是等边三角形

如图,OA、OB是⊙O的半径,且OA垂直OB,操作:在OB上取任意一点P,AP的延长线交⊙O于C,过点C作⊙O的切线CD

DC=DP.连接OC.因为CD是圆的切线,所以OC⊥CD,即∠DCP+∠ACO=90°又OA⊥OB,有∠A+∠APO=90°.OA=OC,有∠A=∠OCP,因此∠DCP=∠APO=∠DPC,于是DC=

如图,在半径为R的⊙O中,弦AB=R,弦BC//OA,则OA =

A为圆上点,O为圆心,OA为半径R