假设n为2的乘幂,并且n大于2,求时间复杂度及count的值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 01:33:30
证明如图手机提问的朋友在客户端右上角评价点【满意】即可
如果N是合数,则必有一个小于或者等于根号N的素因子.因为任何合数都可表示为两个或者更多个素数之积.假如N是合数且其素因子都大于根号N,那么将产生矛盾:根号N*根号N>N.所以合数必有(至少)一个不大于
假设所有小于n+1的素数为p1,p2,...,psn=3时,命题显然成立n>3 则p1*p2*...*ps
假设2^n>2n+1是成立的则2^(n+1)=2*2^n>2*(2n+1)2*(2n+1)-[2(n+1)+1]=4n+2-(2n+3)=2n-1>0所以2^(n+1)>2(n+1)+1也就是说加入满
n=3时,2^3=8>2*3+1,2的n次方大于2n+1成立设n≤k,k>3时成立则:2^(k+1)=2*2^k>2*(2k+1)=4k+2>2k+8>2(k+1)+1n=k+1时成立所以,2的n次方
n阶行列式展开式中正负项个数相同,都是n!/2若它是偶数,即n!/2=2k,k>=1则n!=4k故n>=4.2.由已知,行列式中至少有一行元素都是0,故行列式的值为0再问:为什么考研材料上
用换底公式,只需证lg(n+1)/lgn>lg(n+2)/lg(n+1)只需证lg(n+1)>根号[lgn*lg(n+2)]事实上,2lg(n+1)=lg(n^2+2n+1)>lg(n^2+2n)=l
vara:array[1..100000]ofboolean;n,i:longint;beginfillchar(a,sizeof(a),false);a[2]:=true;readln(n);for
最后两位是03,那么乘2得06,两个相邻数相乘得06的只能是2,3;7,8.经计算得n的最小值为37
根据二项式定理:http://baike.baidu.com/view/392493.html可得:(1+1/n)^n=1+C(n,1)(1/n)+C(n,1)(1/n)+……+(1/n)^n因为,C
(n+1)^n=(n+1)^2*(n+1)^(n-2)(n+1)^(n-2)>1所以n^(n+1)>(n+1)^2
本题可以表述为:n个随机变量两两相互独立,则这n个随机变量相互独立.关键要理解已知条件,i可以去1到n中的任意值,所以x1与(x2……xn),xi与(x1…Xi-1,Xi+1…xn),xn与(x1……
n≥3时,a1a2…a(n-1)=(n-1)²,又a1a2…an=n²,两式相除,得:an=n²/(n-1)²,其中n≥3,a1=1,a1a2=2²=
放缩1/(n+1)>1/2n1/(n+2)>1/2n1/(n+3)>1/2n..1/(2n-1)>1/2n所以,左式>1/2n+1/2n+...+1/2n(共n个)即:左式>n/2n=1/2再问:谢谢
换底公式,换成ln(n+1)/ln(n)-ln(n+2)/ln(n+1).通分,利用真数大小比较就可以了.如果你初学的话,要勤练基本功了,这是很基础的题目啊.
一个数的相反数大于-n,则这个数小于n,所以这个数可以为1,2,3...n-1,共有n-1个.
不用数学归纳法,可用数字代入法假设当n=2时,则1/2+1/3+1/4=6/12+4/12+3/12=13/12>1,命题成立.假设当n=3时,则1/3+1/4+1/5+1/6+1/7+1/8+1/9
可以证明n与2n之间必有素数.这是著名的Bertrand假说(Bertrand'sPostulate,1845),由切比晓夫(Chebyshev)于1850年首次证明.以下网页有初等数学证明:
证明:x^n+y^n=z^n(x^2)*[x^(n-2)]+(y^2)*[y^(n-2)]=(z^2)*[z^(n-2)]易知x^2+y^2=z^2存在着无穷的整数解!若x^(n-2)=y^(n-2)
120=2*2*2*3*5=8*3*5而n(n-2)(n+2)(n-1)(n+1)是相邻的5个自然数所以他们的中肯定有2、3、4、5这四个数的倍数又因为五个数里至少有两个偶数所以他们的乘积肯定能被8整