全体对称矩阵能不能线性空间

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 23:16:05
全体对称矩阵能不能线性空间
全体3阶实对称阵在矩阵的加法和数乘下构成的线性空间的维数为?为什么答案是6?

表示为:abcbdecef只有6个数字在变化,让一个数是1,其余为0,即可得到基,由6个矩阵组成.再问:一般的规律是什么?n(n+1)/2吗?再答:是的

如何证明全体上三角矩阵,对于矩阵的加法与标量乘法在实数域是线性空间

V={A|A上三角矩阵}由于矩阵的加法与标量乘法性质,所以对线性运算性质是不证自明的.只要证明:对加法与标量乘法的封闭性1)A,B∈V,上三角矩阵+上三角矩阵仍然是上三角矩阵,故A+B∈V2)A∈V,

验证n阶对称阵,对矩阵加法及矩阵的数乘构成数域R上的线性空间

因为矩阵的加法运算满足交换,结合,有零矩阵,有负矩阵矩阵的数乘运算也满足相应的4条运算性质所以若证明n阶对称阵对矩阵加法及矩阵的数乘构成数域R上的线性空间,只需证明n阶对称阵对矩阵加法及矩阵的数乘运算

证明:所有N阶对称矩阵组成(N^2+2N)/2维线性空间;所以反N阶对称矩阵组成(N^2-N)/2维线性空间;

n阶对称矩阵的主控元素是主对角线上方(含主对角线)的元素记Eij为第i行第j列元素为1,第j行第i列元素为1,其余全是0的n阶矩阵则Eij,i

复数的全体视为实数域上的线性空间

就是加法是复数+复数,乘法是复数*实数线性空间的定义:设V是一个非空集合,F是一个数域.对于V中任意两个元素α,β,在V中总有唯一确定的一个元素γ与它们对应,称为α与β的和,记为γ=α+β.对于数域F

一道线性代数中关于线性空间的题:设W是P(n*n)的全体由AB-BA的矩阵所生成的子空间,证明dimW=n^2-1

这个问题分两步走.1你首先得说明W={X|X=AB-BA}是线性空间2W的维数为n^2-1其实呢,只要当你说明1后,2自然也就解决了说明1,你需要一个定理定理:方阵C能分解成AB-BA的形式,充分必要

实数域R上全体二阶矩阵构成的线性空间的维数,并写出一组基?

很简单,维数为4基,就这么取(打出来肯定提交不了,太多数字)2阶矩阵不是有4个元素吗?一个元素取1,其他元素取0.这样的2阶矩阵有4个,这就是他的基类似的你可以定义m*n矩阵的维数为mn,基的定义差不

全体可逆矩阵是否构成实数域上的线性空间?全体N阶矩阵呢?如果是,请求出该空间的维数和一组基

全体可逆矩阵是否构成实数域上的线性空间?不是.因为逆对矩阵的加法不封闭,即可逆矩阵的和不一定是可逆矩阵.全体N阶矩阵可构成实数域上的线性空间.记εij为第i行第j列元素为1,其余都是0的n阶矩阵则εi

一个矩阵是不是对称矩阵预期能不能化成对角矩阵存在怎么样的关系?

一般对角化都是针对对称矩阵如果矩阵A不对称,令bij=bji=(aij+aji)/2,可得到对阵矩阵B,再进行对角化.这种变换对于二次型系数矩阵来说,可以在不改变二次型的情况下求解对角矩阵.

全体n阶实对称矩阵,按其合同规范形分类,共可分几类?

设正惯性系数是p,负惯性系数是q,可以先列举一下,当p=0,q可以从0取到n,这样就有n+1种情况当p=1,q可以从0取到n-1,这样就有n种情况.当p=n,q只能取0,是1种情况所以1+2+3+.+

2阶实反对称矩阵的全体关于矩阵的加法和数乘构成几维的线性空间?

2维.主对角线上的元素为0.E_12,E_21为这个线性空间的一组基.

在线性空间Pn乘以n中,A是一个取定的n阶方阵.证明所有与A乘法互换的矩阵全体W是P的一个子空间

设B,C是W中任意两个元素,则(kB)A=k(BA)=k(AB)=A(kB),即kB∈W.(B+C)A=BA+CA=AB+AC=A(B+C),即B+C∈W,因此W对于加法和数乘运算封闭,W是一个子空间

实对称矩阵的集合,对于矩阵的加法和实数与矩阵的乘法是否构成R上的线性空间,如果是,求它的维数和基

3阶与2阶不能加.所以得是同阶.n阶实对称矩阵的集合,对于矩阵的加法和实数与矩阵的乘法构成R上的线性空间,(验证简单,自己完成).维数是1+2+……+n=n(n+1)/2.基可以用{Eij}1≤i≤j

n阶实反对称矩阵的全体按通常的矩阵加法和数乘运算构成一线性空间,其维数等于____,其一组基为______?

反对称矩阵主对角线上元全是0,aji=-aij所以反对称矩阵由其上三角部分唯一确定,故其维数为:(n-1)+(n-2)+...+1=n(n-1)/2令Eij为aij=1,aji=-1,其余元素为0的矩

线性空间的证明检验集合(n阶实对称矩阵的全体,关于矩阵的加法和实数与矩阵的数乘)是否构成实数域R上的线性空间

反对称矩阵主对角线上元全是0,aji=-aij所以反对称矩阵由其上三角部分唯一确定,故其维数为:(n-1)+(n-2)+...+1=n(n-1)/2令Eij为aij=1,aji=-1,其余元素为0的矩

设A 是一个n ×n 实矩阵,A 的实系数多项式f (A )的全体,对于矩阵的加法和数量乘法,试证明其是线性空间

设V={f(A)|f(x)是实系数多项式}因为矩阵的加法和数乘满足线性空间的8条算律,所以,只需证明V对运算封闭即可.对V中任意f(A),g(A),则h(x)=f(x)+g(x)是实系数多项式,所以f