关于x的一元二次方程x平方-4x m=0 ,(1)若方程有实数根,求m的范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 01:45:54
4x的平方+3x=0x(4x+3)=0x=0或4x+3=0x=0或x=-3/4
5x²=4-2x5x²+2x-4=0x={-2±√[2²-4×5×(-4)]}/(2×5)x=(-2±2√21)/10x=(-1±√21)/5x1=(-1+√21)/5,
http://zhidao.baidu.com/question/583189708.html
要求证有两个不相等的实数根那么△>0(2k+4)²-4(k²+4k+3)=4k²+16k+16-4k²-16k-12=4无论k为何值△=4>0所以方程肯定有两个
(x1+x2)²-(x1x2)²=0根据韦达定理m²=16∵有两个不同的实数根∴△>0即m=-4
直接开平方法,配方法,公式法,因式分解法因式分解法分为:提取公因式法,公式法,十字相乘法,分组分解法,主元法,换元法,待定系数法
x²+4x+m-1=0x1+x2=-4x1x2=m-1(x1)²+(x2)²=(x1+x2)²-2x1x2=16-2(m-1)=18-2m18-2m-(m-1)
(2k+1)^2-16(k-1/2)=04k^2+4k-16k+8=0k^2-3k+2=0(k-1)(k-2)=0k=1或k=2当k=1时,x^2-(2k+1)x+4(k-1/2)=0即x^2-3x+
假设x1>x2x1+x2=8x1²-x2²=(x1+x2)(x1-x2)=16所以x1-x2=2x1x2=m(x1-x2)²=(x1+x2)²-4x1x24=6
这道题需要利用求根公式Δ=b^2-4ac=4m^2-4*(-3m^2+8m-4)=16m^2-32m+16=16*(m^2-2m+1)=16(m-1)^2因为m>2,所以m-1>1,Δ>0所以原方程永
因为原方程有两个不相等的实根,所以△=4+4a>0所以a>-1因为x1分之一+x2分之一=-3分之2所以(x1+x2)/x1x2=-2/3由根系关系可得:x1+x2=2,x1x2=-a所以2/(-a)
是一元二次方程
这是一个完全平方式方程可化为:【(a-4)X+1】的平方=0即(a-4)X+1=0(a-4)X=-1X=-1/(a-4)x=1/(4-a)因为是关于X的方程,所以就把a看做是一个常数,用a来表示X
不是这是一元一次方程4-2X=0
解题思路:一元二次方程解题过程:答:选B把x=0带入得到。m2-1=0m=1或m=-1当m=1时候,二次项系数为0,此时便不是一元二次方程,故舍去m=1.所以选B同学您好,如对解答还有疑问,可在答案下
1、m=-3(方程ax+by+c=0中的b^2-4ac=0)2、用韦达定理x1+x2=-b/a=m+2x1*x2=c/a=1/4(m^2)-2结合条件x1^2+x2^2=18可得出m=-10或2m=-
x²-4x+4=0(x-2)²=0x=2
原题:已知关于x的一元二次方程2x^2+4x+k-1=0有实数根,k为正整数.(1)求k的值(2)当此方程有两个非零的整数根,将关于x的二次函数y=2x^2+4x+k-1的图像向下平移8个单位,求平移
(1)、方程的判别式:△=(m-3)^2+4m^2=5m^2-6m+9=5(m-3/5)^2+36/5>=36/5>0所以方程必有两个不等的实根;(2)、由韦达定理:x1+x2=(m-3),x1*x2
x^2+√2x+a=0一个根是1-√2另一个根设为k根据实数性质得:x1+x2=k+1-√2=-√2k=-1所以另外一个根是-1