关于x的方程x m 3-2x-1 2=m的解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:53:57
关于x的方程x m 3-2x-1 2=m的解
关于x的方程1x=2+a1+x

去分母得:1+x=2x+ax,解得:(a+1)x=1,解得:x=1a+1,根据题意得:1a+1<0,即a+1<0,且1a+1≠-1,解得:a<-1且a≠-2.

已知关于x的方程x=a+x/2+x/6+x/12+x/20+...+x/9900的解为x=-1,求a的值

-1=a-1/2-1/6-1/12-1/20'''''''-1/9900-a=1-1/2-1/6-1/12-1/20''''''-1/9900-a=1/100a=-1/100

已知关于x的方程-x2+2x=|a-1|在x∈(12,2]

由于函数f(x)=-x2+2x=-(x-1)2+1≤1,故函数f(x)的值域为(-∞,1].根据已知关于x的方程-x2+2x=|a-1|在x∈(12,2]上恒有实数根,的图象和直线y=|a-1|的图象

已知关于X的方程

解题思路:由条件中的两个等量关系可直接求得方程两根,再用代入法或根与系数的关系证明出a=b=c.解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("

若关于x的方程2x−2

方程两边都乘以(x-2)得,2-x-m=2(x-2),∵分式方程有增根,∴x-2=0,解得x=2,∴2-2-m=2(2-2),解得m=0.故答案为:0.

已知关于x的方程3[x-2(x-a3

由方程(1)得x=27a由方程(2)得:x=27−2a21由题意得:27a=27−2a21解得:a=2714,代入解得:x=2728.∴可得:这个解为2728.

已知关于x的方程:①x-12

x-12=2x,解得:x=-12,∵方程①的解是方程②的解的一半,∴方程②的解是x=-1,把x=-1代入方程②得:-3-2m=0,解得:m=-32,代入方程③得:x−32-3=-32,x+92=94,

关于x的方程(34

由题意可得函数f(x)=(34)x的图象和直线y=3a+2在(-∞,0)上有交点,故有3a+2>1,解得 a>-13,故实数a的取值范围为(-13,+∞),故答案为(-13,+∞).

关于x的方程

解题思路:解分式方程,根据分时意义。可求。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/incl

关于x的方程(a-12

方程(a-12)x2+2x+1=0不是一元二次方程,方程x2=b只有一个实数根,得到a=12,b=0,代入方程得:12x2+x-14=0,即2x2+4x-1=0,这里a=2,b=4,c=-1,∵△=1

关于x的方程12

由关于x的方程12x=-2+a,得x=-4+2a;由关于x的方程5x-2a=10,得x=2+25a;根据题意,得(-4+2a)-(2+25a)=2,即85a=8,解得,a=5.

已知关于x的方程12

∵12x=-2,∴x=-4.∵方程12x=-2的根比方程5x-2a=0的根大2,∴方程5x-2a=0的根为-6.∴5×(-6)-2a=0,∴a=-15.可得:x−15-15=0.解得:x=-225.

解关于x的方程:2x/3+a=x/2-1/6(x-12)

【参考答案】(2/3)x+a=(x/2)-(1/6)(x-12)4x+6a=3x-(x-12)4x-3x+(x-12)=-6a2x-12=-6a2x=12-6a∴x=6-a∴原方程的解是x=6-a再问

关于x的方程(12)

当x>0时,0<(12)x<1∵关于x的方程(12)x=11−lga有正根∴0<11−lga<1即lga<0∴0<a<1故答案为:(0,1)

已知:关于x的方程x+m3−2x−12=m

方程x+m3−2x−12=m,2x+2m-6x+3=6m,-4x=4m-3,x=-4m−34.因为它的解为非正数,即x≤0,∴-4m−34≤0,得m≥34.

关于X的方程3X+A=AX+2

3X+A=AX+23X-AX=2-A(3-A)X=2-AA=3时,0=-1不成立,此时无解A≠时,解为X=(2-A)/(3-A)或写作:X=(A-2)/(A-3)

关于x的方程ax-2x=6

对于方程ax-2x=6(a-2)x=6(1)①当a=2时,方程无解;②当a≠2时,方程的解为x=6/(a-2).(2)若方程有正整数解,则a≠2,且6/(a-2)为正整数,即a-2是6的正约数,而6的

设关于x的方程sin(2x+π6

∵x∈[0,π2],∴(2x+π6)∈[π6,7π6].∵关于x的方程sin(2x+π6)=k+12在[0,π2]内有两个不同根α,β,∴12=sinπ6≤k+12<1,解得0≤k<1,∴α+β=2×

解关于x的方程

解题思路:本题通过一元二次方程的定义,得到m的值,将方程化简为一般一元二次方程,利用公式法,求得方程的解。解题过程: