关于x的方程x^2-2 X 2=M恰有三个实数根,则m的值等于
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 04:49:00
拆开,得x^2-2x-mx+2m=p^2-2p-mp+2m移项得x^2-p^2-2x+2p-mx+mp=0(x-p)(x+p)-2(x-p)-m(x-p)=0(x-p)(x+p-2-m)=0x1=p,
1,若m+1=0,即m=-1,有(-2)*(-1)x+(-1)=0,x=1/2,所以x=-1满足题意;若m≠-1,有△=(2m)^2-4*(m+1)m>=0解得m,
(1)因为△=4m2-4(m+2)≥0,解得:m≤-1或m≥2.(2)设方程x2+2mx+m+2=0有两根x1,x2,由一元二次方程根与系数的关系以及根的判别式可得:△=4m2-4(m+2)>0,x1
(1)把x=1代入方程,得1+2+m-1=0,所以m=-2;(2)∵方程有两个不相等的实数根,∴△>0,即22-4(m-1)>0,解得m<2.所以m的取值范围为m<2.
x1+x2=3/2x1x2=m/21.△=9-8m>=0,∴m0,∴m>0∴0
判别式=[2(2-m)]²-4(3-6m)=4[(2-m)²-(3-6m)]=4(m²-4m+4-3+6m)=4(m²+2m+1)=4(m+1)²>=
m(x²+x+1)=x²+x+2(m-1)x²+(m-1)x+(m-2)=0Δ=(m-1)²-4(m-1)(m-2)=m²-2m+1-4m²
(1)∵原方程没有实数根,∴△<0,∴[-2(m+1)]2-4m2<0,解得,m<-12,故m<-12时,原方程没有实数根.(2)∵原方程有两个实数根,∴△≥0,∴[-2(m+1)]2-4m2≥0,∴
(1)证明:△=(m+2)2-4(2m-1)=m2-4m+8=(m-2)2+4,∵(m-2)2≥0,∴(m-2)2+4>0,即△>0,所以方程有两个不相等的实数根;(2)设方程的两个根为x1,x2,由
(1)证明:∵关于x的方程x2+2(2-m)x+3-6m=0中,△=4(2-m)2-4(3-6m)=4(m+1)2≥0,∴无论m取什么实数,方程总有实数根.(2)如果方程的两个实数根x1,x2满足x1
关于x的方程(m2-9)x2+(m-3)x+2m=0(1)要使方程是一元一次方程则m^2-9=0且m-3≠0所以m=-3(2)要使方程是一元二次方程则m^2-9≠0所以m≠±3
没说根是实的还是虚的用韦达定理即两根之和两根之积易知(X1-X2)^2=16-4m所以|16-4m|=4解得m=3或m=5m=5时有两个共轭虚根再问:为什么要套绝对值?16-4M本来就是由平方得是正的
(1)∵该方程的一个根为1,∴1+m+m-2=0,解得m=12,∴方程为x2+12x-32=0,解得x1=1,x2=-32,∴该方程的另一根为-32;(2)∵△=m2-4(m-2)=(m-2)2+4>
x=2再问:能不能给一个详细的过程,拜托~~再答:那就是(m-1)x*x-(2m-6)*x-8=0即【(m-1)*x+4】*【x-2】=0即x=2或者x=4/(1-m)(m不等于1)
(1)证明:当m+2=0时,方程化为25x-5=0,解得x=52;当m+2≠0时,△=(-5m)2-4(m+2)(m-3)=(m+2)2+20,∵(m+2)2≥0,∴△>0,即m≠-2时,方程有两个不
你的式子中,分不出来分子和分母的个数呀?再问:(2x\x+1)-(m\x2+x)=2x-1\x再答:是这样吗?[2x/(x+1)]-[m/(x²+x)]=(2x-1)/x.再问:嗯再答:[2
观察得到:x1=p是方程的一个根.又x1+x2=2+m所以x2=m-p+2
由韦达定理知:x1+x2=-1,则x1,x2不可能同为正数若x1
由题意delta=4-4m>=0得m
x1+x2=-2m+1x1*x2=m^2+1x1^2+x2^2=(x1+x2)^2-2x1x2=(-2m+1)^2-2(m^2+1)=4m^2-4m+1-2m^2-2=2m^2-4m-1=15得2m^