其中D是由直线x=2,y=x及曲面xy=1所围成的封闭域

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:28:40
其中D是由直线x=2,y=x及曲面xy=1所围成的封闭域
求助二重积分的计算!∫∫(3x+2y)dxdy,其中D是由两坐标轴及直线x+y=2所围成的闭区域. D

思路:分部积分先将(3x+2y)关于y从0到2-x积分,再关于x从0到2积分原积分=6*x*(2-x)+2*(2-x)^2

计算二重积分∫∫(D)3xy^2dxdy,其中D由直线y=x,x=1及x轴所围成区域

积分区域:0≤x≤1,0≤y≤x∫∫3xy^2dxdy=3∫xdx∫y^2dy=3∫x[y^3/3]dx=3∫x*x^3/3dx=∫x^4dx=x^5/5=1/5

计算二重积分∫∫xydσ 其中D是由曲线y=x 2及直线x=1,y=0轴围成的闭区域

{y=x²、y=0{x=1∫∫xydxdy=∫[0→1]dx∫[0→x²]xydy=∫[0→1]x*[y²/2]:[0→x²]dx=∫[0→1]x/2*x

计算二重积分I=∫∫(D)x^2*e^(-y^2)dxdy,其中D由直线y=x,y=x与y轴围成

“其中D由直线y=x,y=x与y轴围成”有错!再问:其中D由直线y=x,y=1与y轴围成求帮忙看下这题到底怎么做。。再答:二重积分I=∫∫(D)x^2*e^(-y^2)dxdy=∫e^(-y²

∫∫arctan(y/x)dxdy其中D是由y=√(4-x²)及三直线y=x,y=0,x=1围成

被积区域如下图以极坐标表示,设x=r·cosθ,y=r·sinθ则被积区域可表示为,0≤θ≤π/4,0≤r≤1/cosθarctan(y/x)=θ则有再问:我感觉积分区域应该是右下侧那部分,1/cos

设D是由抛物线Y=1-x^2和X轴,y轴及直线X=2所围成的区域的面积及D绕X轴旋转所得旋转体的体积

约定一下:用S代替积分号,本题的积分下限为0,上限为2体积=Sπ(1-x^2)^2dx=πS(1-2x^2+x^4)dx=π(x-2x^2/3+x^5/5)|(下:0,上:2)=π(2-8/3+32/

计算积分∫∫ √y^2-xydxdy,其中D是由直线y=1,y=x,x=0围成的闭区域

看图片,不懂再问.再问:谢谢,我先看看

计算二重积分∫∫ydxdy,其中D是由直线x=-2,y=0,y=2及曲线x=-√根号(2y-y^2)所围成的区域.

化成二次积分计算.经济数学团队帮你解答.请及时评价.谢谢!

利用极坐标求积分∫∫(x2+y2)dxdy 其中D是由直线y=x,y=x+a,y=a及y=3a(a>0)所围成的区域

这道题用极坐标变换便不好做,因为积分范围真的是不好确定.  应该是用积分变化.令y=y,和z=y-x,这时有范围a再问:这个方法懂的。是正确答案,谢谢啦只是老师要求用极坐标做啊……再答:极坐标的不好写

微积分二重积分问题3计算∫∫ (sinx/x)dxdy ,其中D是由直线y=x ,y=x^2所围成的区域

令x=x^2,得到x=0和x=1,所以积分区域x是在0到1之间,而且在此区域里,x>x^2显然不能直接对(sinx/x)dx进行积分,所以先对dy进行积分∫∫(sinx/x)dxdy=∫(上限1,下限

计算二重积分∫∫xydσ其中D是由直线x=0、y=0及x+y=1所围成的闭区域.

我来试试吧.∫∫xydσ=∫(0到1)dx∫(0到1-x)xydy=∫(0到1)xdx∫(0到1-x)ydy=∫(0到1)x[1/2y²]((0到1-x)dx=∫(0到1)1/2x(x-1)

计算二重积分D∫∫xydσ,D是由直线y=1,X=2及y=x所围成的闭区域,

把二重积分化为累次积分∫(1到2)[∫(y到2)xydx]dy=∫(1到2)[(1/2)yx^2|(y到2)]dy=∫(1到2)[2y-(1/2)y^3]dy=y^2-(1/8)y^4|(1到2)=9

计算∫∫xydδ,其中D是由直线y=1,x=0及y=x所围成的闭区域 D

x型:对于闭区域D,0≤x≤1,x≤y≤1∴∫∫xydδ=∫(D1)dx∫(D2)xydy,其中D1即0≤x≤1,D2即x≤y≤1原式=∫D1(1/2x-1/2x³)dx=1/8或者y型:0