其中s为柱面x^2 y^2=r^2被平面z=0 z=h所截部分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:35:31
其中s为柱面x^2 y^2=r^2被平面z=0 z=h所截部分
∫∫∫Ωxzdsdydz,其中Ω是由平面x=y,y=1,z=0及抛物柱面y=x^2所围成的闭区域

题目出错了,区域不封闭,向上的方向是开口的,估计原题的意思是把y=1改成z=1.

计算曲面积分∫∫∑ z^2 dS其中 ∑为柱面x^2+y^2=4 介于0≤z≤6的部分

考虑yz面Σ₁:x=√(4-y²)或Σ₂:x=-√(4-y²)dx/dy=-y/√(4-y²)dx/dz=0∫∫Σz²dS=2∫∫Σ&#

设柱面的淮线为:y=X^2+Z^2,y=2X,母线垂直于准线所在平面,求这柱面方程.

由于,柱面的准线为x=2z,x=y*y+z*z.(将原题中的X=2z改写为:x=2z)而x=2z为一平面.故它就是准线所在平面.即所求柱面的母线垂直于此平面.此平面(x=2z)的法向量为n=(1,0,

证明锥面z=2√x^2+y^2被柱面x^+y^=2x所截得的有限部分的面积为√5π

可以用曲面积分来求.因为曲面是锥面z=2√x^2+y^2的一部分.满足z'x=2x/√x^2+y^2,z'y=2y/√x^2+y^2设∑表示x^2+y^2=2x所围成的圆域,S∑表示这个圆的面积.所求

曲面2z=x^2+y^2被柱面(x^2+y^2)^2=x^2-y^2所截下部分的曲面

柱面(x^2+y^2)^2=x^2-y^2化成极坐标方程是r^2=cos2θ.即r=√cos2θ.θ的范围是[-π/4,π/4]∪[3π/4,5π/4]S=∫∫dS=∫∫√[1+(z'x)^2+(z'

∫∫∫xzdxdydz,其中ω是曲面z=0,z=y,y=1,以及抛物柱面y=x^2所围成的闭区域

原式=∫xdx∫dy∫zdz=(1/2)∫xdx∫y²dy=(1/6)∫x(1-x^6)dx=(1/6)∫(x-x^7)dx=(1/6)*0=0

求双曲抛物面z=xy被柱面x^2+y^2=1(x>=0,y>=0)截下部分的面积.

D={(x,y):x^2+y^2=0,y>=0},z=xy,az/ax=y,az/ay=x,于是面积=二重积分_D根号(1+(az/ax)^2+(az/ay)^2)dxdy=二重积分_D根号(1+x^

高数--柱面方程分别求母线平行于X轴及Y轴而且通过曲线{2x^2+y^2+z^2=16和x^2+z^-y^2=0的柱面方

求母线平行于X轴的柱面方程,只须消去两个方程中的x,得柱面方程为:3y^2-z^2=16求母线平行于y轴的柱面方程,只须消去两个方程中的y,得柱面方程为:3x^2+2z^2=16

高数题设曲面∑为柱面x^2+y^2=1介于平面z=-2与z=2之间的部分,则曲面积分∫∫(∑)(x^2+yz+y^2)d

首先要知道,投影时不能像xoy面投影的,因为在xoy面上投影为线条,没有范围的……其实这个问题不用投影就可以解决的,先看看曲面∑是关于xoz面对称的,但是积分函数中yz一项为y的奇函数,由对称性可知,

计算二重积分(y-z)x^2dzdx+(x+y)dxdy其中是柱面x^2+y^2=1及平面z=0

=∫x(yzx^2-1/2(xz)^2)dx+∫y(1/2x^2+xy)dy=[1/3yzx^3-1/6z^2x^3+1/2x^2y+1/2xy^2]|z[0,2]、y[0,1]、x[0,1]=1

高等数学求柱面方程求对称抽为x=y/2=z/3,直截面是半径为2的圆周的柱面的方程.提供思路即可,

直线L:x=y/2=z/3的方向向量为(1,2,3),过原点并且与直线L垂直的平面M方程为x+2y+3z=0;现作半径为2且过原点的球x²+y²+z²=4,平面M与球的交

计算曲面积分如图其中曲面是柱面x^2+y^2=1被平面z=0和z=3所截得的在x》=0的部分,取外侧

高斯公式法.取Σ:x²+y²=1,前侧补Σ1:z=3,上侧补Σ2:z=0,下侧补Σ3:x=0,后侧∫∫(Σ+Σ1+Σ2+Σ3)ydzdx=∫∫∫Ω(0+1+0)dxdydz=∫∫Ω

求曲面x^2+y^2=z,柱面x^2+y^2=4及xoy平面所围成立体体积

所围成立体体积=∫∫(x²+y²)dxdy(所围成立体体积在xoy平面上的投影:x²+y²≤4)=∫dθ∫r²*rdr(作极坐标变换)=2π*(2^4

matlab 如何画复杂函数绕y轴一周的柱面图?函数方程为两个正态分布之和y=A*exp(-x^2/2)+B*exp(-

不好意思啊,以前那个画法有错,我疏忽了.Cylinder(r,n)这个命令是画一个半径为r,高度为1的圆柱体.n表示圆柱体的圆周有指定的n个距离相同的点.r也可以为函数表达式.y=exp(-x^2/2

已知柱面方程为x^2+y^2=a^2,平面x+y+z=a 求两曲面交线所围成平面区域的面积

相交为椭圆柱轴对称方向(1,0,0)切面法线方向(1,1,1)/sqrt(3)它们垂直方向为相交椭圆的短轴方向(0,-1,1)/sqrt(2),由于此方向垂直柱轴对称方向,此方向直线相交柱的长度为柱的

用柱面坐标计算三重积分(Ω)∫∫∫xyzdy,其中Ω是柱面x^2+y^2=1与平面z=0与z=3所围成的面积

"使用柱坐标系:0≤θ≤π/2,0≤ρ≤1,0≤z≤1∫∫∫xydv=∫(0→π/2)dθ∫(0→1)ρdρ∫(0→1)ρ^2sinθcosθdz=∫(0→π/2)dθ∫(0→1)ρ^3sinθcos

求由柱面x^2+y^2=Rx和球面x^2+y^2+z^2=R^2所围成的立体的体积

由对称性,只需计算xy平面上方部分的体积然后乘以2即可.记D={(x,y):x^2+y^2

z=x^2+y^2表示的二次曲面是椭球面,柱面,圆锥面,还是抛物面?

图像过原点当x^2+y^2增大即圆的半径增大时z也增大所以它的图像是倒立的圆锥面顶点在原点

求以双曲抛物面z=xy为顶,以xy坐标面为底,以平面x=0为侧,柱面x^2+y^2=1为内侧,柱面x^2+y^2=2x为

这道题应该是出错了,应该是以平面y=0为侧,那样结果就正确了.