冲击函数从负零到正无穷的积分值为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 11:03:44
应该用误差函数erf来求.1、首先,积分上下限:∫(-∞,x)应分成∫(-∞,0)+∫(0,x)=-∫(0,-∞)+∫(0,x)2、被积变量t应作变换:t1=t/σ→t=σ*t1相应的积分限x变为x/
e的(-x)次方从负无穷到0的定积分是-1/2+1/2*e(无穷次方)即:正无穷从答案上来看原函数应为:F(x)=(1/2)[∫e^(x)dx(积分下限为负无穷,上限为0)]+(1/2)[∫e^(-x
^^你知道正态分布吧f(x)=[1/√(2pi)]*exp(-x^2)EX=0DX=1EX^2=DX+(EX)^2=1=∫x^2f(x)dx从负无穷到正无穷所以∫x^2*[1/√(2pi)]*exp(
分部积分ye^(-y)dy=-yd(e^(-y)),注意第一项-ye^(-y)代上限下限结果为1.第二项为积分e^(-y)dy没问题吧
不用原函数计算,利用二重积分计算,网络上很多的,如果只要数值,你查找高斯积分就可以了,数值等于2Pi,这里的Pi就是圆周率
∫[-∞,+∞]e^t²dt=2∫[0,+∞]e^t²dt>2∫[0,+∞]dt=+∞所以上面的无穷积分是发散的.泊松积分是∫[0,+∞]e^(-t²)dt=√π/2再问
首先积分只有在a>0时有意义由于对称性从负无穷到正无穷对e^-at^2=2从0到正无穷对e^-at^2=2∫e^(-at^2)dt[∫e^(-at^2)dt]^2=∫e^(-ax^2)dx∫e^(-a
因为极限lim∫(0,x)sinxdx=lim(1-cosx)不收敛所以sinx从0到正无穷的广义积分不收敛再问:同意。
|sinx^2/x^p|≤1/x^p,找到1/x^p的收敛域应该就可以了吧,只是提供个思路,未必正确.
∫dx/(1+x^4)=(1/2)[∫(1+x²)dx/(1+x^4)+∫(1-x²)dx/(1+x^4)].分子分母同除于x²=(1/2){∫[(1/x²)+
这就是一个“的他”函数,那个符号打不出来.这个式子前面是不是还有点东西?楼上2位的解法太复杂了,不推荐.直接写上“的他”(P‘--P).不用算,直接写上这个答案.记得加上前面的(1/根号2π倍h吧)构
奇函数关于原点对称所以y轴左边和右边对应的趋于一个三x轴上方,一个在x轴下方所以面积一正一负,正好抵消所以积分=0
不知道你学了二重积分没啊,没学的话,貌似做不出至于结果是1倒很好理解啊,所有情况出现的概率之和是1定积分和积分变量无关把积分变量x换成y,得到一个新积分(值和原积分相等),将此积分和原积分相乘得到的另
如果是从-无穷到正无穷,这个积分是反常的发散的积分,没有固定的值,只能求某个柯西主值.下面求一个柯西主值.从0到1的积分显然是0,不过除此之外,我们发现从-1到0,和从1到2的积分喝也是0从-2到-1
δ(f(t))这是复合函数,发生冲激的时刻由f(t)=0求出,假设发生冲激时刻为t1,则其强度=1/|f'(t1)|;答案是对的再问:你的意思是t1时刻为(-2),t2时刻为(+2),那么每一个的强度
积分空间对称不对称没关系,只要看两点:1.当自变量为0时,方程的值是多少2.积分区间是否包含了0例如,当自变量为0时,方程为a,且积分区间包含了0,那么积分结果就是a.如果积分区间没有包含0,那么积分
不就是1啦原函数为e^xx=0e^0=1x=-infe^-inf=0所以为1
具体多少无法算出来