.将二次积分 化为先对x积分的二次积分并计算其值.计算过程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:32:43
0再问: 难道图中的x,y不符合0<=x<=1,0<=y<=1这个条件吗再答:不符合,它的形式是0
原式=∫[sin(y^2)/y]dy∫dx(交换积分顺序)=∫[sin(y^2)/y]y^2dy=∫ysin(y^2)dy=(1/2)∫sin(y^2)d(y^2)=(1/2)[cos(0)-cos(
用公式编辑器比较麻烦,我就口述一下:先化为一次积分,再将积分写成π∫-∫y的两部分接着令y^2=t,将含π的那部分积分变量代换得到∫1,再令u=π-t,对∫1再次变量代换,得到∫2,联立∫1和∫2求到
积分区域是圆的四分之一区域经济数学团队帮你解答.满意请及时评价.谢谢!
应该是一样的啊,只是计算的复杂性不一样,另外可以用奇偶性和对称性来简化计算
先画积分区域:本题积分区域为x²+y²≤2x的上半圆,将曲线x²+y²=2x写为极坐标形式为r=2cosθ这样积分可化为∫∫f(x,y)dxdyD:x²
有许多公式,就是不定积分的公式.∫x^ndx=x^(n+1)/(n+1)类似这些很多的.
dy,所以要把x看成常数,那么就是y√(a-y²)dy=1/2*√(a-y²)d(y²)=-1/2*√(a-y²)d(a-y²)=-1/2*(2/3)
∫[0,1]dx∫[0,1]f(x,y)dy=∫∫f(x,y)dxdy积分区域为矩形:0≤x≤1,0≤y≤1作y=x将矩形分为两部分分别来做,x=1对应的极坐标方程为:rcosθ=1,即r=1/cos
D为圆(x-1)^2+(y-1)^2=1的内部,这个圆与x轴相切于点(1,0),与y轴相切于点(0,1),圆内所有点均在第一象限内.两个切点(1,0)与(0,1)是边界点,幅角a的范围是0到π/2,而
变量和被积函数部分是套公式,极坐标积分顺序变化不多,一般总是先积r,后积θ.主要是积分区域,原积分区域是矩形,化为极坐标后,要分为曲边扇形:沿θ=π/4(y=x)把矩形分为两部分:,一部分:0≤θ≤π
角度应该是0到π/2,而r是为2/(sino+coso)
这个积分区域应该是个边长为1的正方形内部.如果要用极坐标,令x=rcost,y=rsint,则dxdy=rdrdt则把正方形区域按照角度分为两个区域R1,R2其中R1={(r,t)|0≤r≤1/cos
积分区域是半圆,化成极坐标为:r=2acosθ,(0≤θ≤π)原式=∫[0,π/2]dθ∫[0,2acosθ](r^2*r)dr=∫[0,π/2]dθ[0,2acosθ[r^4/4=(1/4)∫[0,
被积分函数的不用管了吧都是∫∫f(rcosθ,rsinθ)rdrdθ1.代入x=rcosθ,y=rsinθ则,
这不是书上的题吧?不是所有区域都适合用极坐标的,这个题不适合极坐标.再问:题目确实是这个样要求的