函数f(x)=1 (1-x)在x0=0点的n阶泰勒展开式为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:30:07
函数f(x)=1 (1-x)在x0=0点的n阶泰勒展开式为
若函数f(x)满足f(x)+2f(1/x)=3x,秋函数f(x)在x属于【1,2】上的值域

f(x)+2f(1/x)=3x则有f(1/x)+2f(x)=3*1/x所以f(1/x)=3/x-2f(x)代入上行等式得f(x)+2*(3/x-2f(x))=3xf(x)=2/x-x是一个减函数f(x

已知函数f(x)=2x+1,x>=0;f(x)=|x|,x

-3或者1再问:求详解·,谢谢再答:这是分段函数啊。。当X>=0时,FX=2X+1。。然后你把2X0+1=3带入,求出X0=1当X

f(x)=x+(1/x)且f(x)在x大于等于1上是增函数还是减函数?

是减函数.最后化简为(x1x2-1)(x1-x2)/x1x2因为1

判断分段函数f(x)=x(1-x),x

x0,f(-x)=-x(1-x)=-f(x);x>0时,-x再问:问一下。如果fx=x,x<0,x(1+x),x大于零的话也可以证到f(-x)=-(fx)但很显然不是奇函数。解释一下吧?再答:没看明白

设函数f(X)定义在(0,+∞)上,f(1)=0,导数f'(x)=1/x,g(x)=f(x)+f'(x) .

f'(x)=1/x所以f(x)=lnx+cf(1)=0c=0f(x)=lnxg(x)=lnx+1/x(x>0)g(1/x)=x-lnx(x>0)g(x)-g(1/x)=2lnx+1/x-x另F(x)=

设函数f(x)定义在(0,+∞)上,f(1)=0,导函数f'(x)=1/x,g(x)=f(x)+f'(x).

证明:假设存在x0>0,使|g(x)-g(x0)|<1/x成立,即对任意x>0,有Inx<g(x0)<Inx+2/x,(*)但对上述x0,取x1=eg(x0)时,有Inx1=g(x0),这与(*)左边

函数f(x)=|x|/x 在x=1处的极限

此事|x|=x所以原式=limx/x=1

函数F(X)={1+sinx,(x

1+sinx,(x再问:能给详细步骤吗再答:就是f(x)在x=0处的左右极限都存在且等于f(0)的值

函数f(x)=x+1/x在x=1的导数

f'(x)=1-1/(x*x)f'(1)=0

已知函数f(x)=分段函数:-x+1,x

分段函数分段讨论当X

若函数y=f(x)满足f(x+2)=f(x),且x在[-1,1]时,f(x)=x² 函数

利用数形结合,可知为9个零点.具体说明如下:由于f(x+2)=f(x),因此f(x)是最小周期为2的函数,又由于x在[-1,1]时f(x)=x^2,所以可以将f(x)的图像以2为周期在x轴方向重复右移

已知函数f(x)=ln(x+m),g(x)=e^x-1,F(x)=g(x)-f(x)在x=0处取得极值.

1、F(x)=g(x)-f(x)=(e^x-1)-ln(x+m)F'(x)=e^x-1/(x+m)当x=0时,F'(x)=0,即e^0-1/(0+m)=0,m=1F'(x)=e^x-1/(x+1)当x

设函数f(x)满足f(x)+2f(1/x)=x,求f(x)

f(x)+2f(1/x)=x用1/x代替x得:f(1/x)+2f(x)=1/x两边同时乘2得:2f(1/x)+4f(x)=2/x和原式相减得:3f(x)=2/x-x所以f(x)=2/(3x)-x/3

设函数f(x)定义域在(0,+∞)上,f(1)=0导函数f'(x)=1/x,g(x)=f(x)+f'(x)

暂时弄出了前两个问,不知道对不对.(1)因为f‘(x)=1/x所以f(x)=lnx+c又因为f(1)=ln1+c=0所以c=0所以g(x)=lnx+1/x令g’(x)=1/x-1/(x的平方)=0得x

设函数f(x)=x-[x],x≥0,f(x+1),x

画图可知f(x)就是周期为1的函数,且在[0,1)上是一直线y=x的对应部分的含左端点,不包右端点的线段,要有三解,只需直线y=kx+k过点(3,1)与直线y=kx+k过点(2,1)之间即可.第二条直

定义函数f(x)={1,x

这是一个分段函数,在x=0上有不同定义.(1)a=0时成立.正确(2)a^2>=0,b^2>=0,因此f(a^2)+f(b^2)=e^(a^2)+e^(b^2),以下是均值不等式.正确(3)a=b=-

定义在R上的函数f(x)不是常函数,f(x-1)=f(x+1),f(1+x)=f(1-x),则f(x)

f(-x-1)=f(-x+1)=f(1-x)=f(1+x)f(-x-1)=f[-(x+1)]=f(1+x)所以f(x)是偶函数

函数f(x)在定义域R内可导,且f(x)满足 f(x)=f(2-x) (x-1)f'(x)>

f(x)关于直线x=1对称(x-1)f'(x)>0x>1时,f'(x)>0,f(x)单调递增x再问:刚才题目没补充完整你再看下再答:x>0时,f(x)>0,所以x>3x

f(x)=x+1/x且f(x)在x大于等于1上是增函数还是减函数?

方法1.这是一个比较常用的函数类型y=x+a/x(a>0)X在(0,根号a)单调递减,在(根号a,+无穷大)单调递增,所以在x大于等于1上是增函数方法2.求导f'(x)=1-1/x^2=(x^2-1)