函数f(x)=ln(e^2x 1) ax是偶函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:54:54
原因:若x0≤1,则2-x0≥1,而lnx0≤0,等式两边左边大于等于1,而右边小于等于0,无法相等,即等式不成立,但实际上等式是成立的,故必须x0>1再问:2=lnx+x=g(x),g(1)=11再
1/2x^2是什么,我理解为1/2×x^2求导f'(x)=x+1/xx属于[1,e^2],f'(x)>0,在[1,e^2]上递增,所以f(x)max=f(e^2)=1/2e^4+2
可以用求导的方法吗?再问:可以我高3再答:那就可以蛮干了。。f'(x)=(1-x)e^(-x),有f(x)极大值1,在(负无穷,1)递增,在(1,正无穷)递减,根据f(0)=f(正无穷)=0可以画草图
用复合函数求导法.1y'=2f'/f2y'=2f*f'*e^x再问:能否把过程写一下,谢谢再答:1设f(2x)=u(x),y=lnu(x),y'=(lnu)'u'=u'/u=u'/f,而u'=(f(2
设X1>X2F(X1)-F(X2)=In[(1+e^x1)/(1+e^x2)]+x1-x2x1>x2x1-x2>0[(1+e^x1)/(1+e^x2)>1In[(1+e^x1)/(1+e^x2)]>0
-10f(x)单调递增,所以f(x)的最小值=f(0)=1.0=f(0)=1f(x2-x1)=e^(x2-x1)-ln(x2-x1+1)>1,即e^(x2-x1)>1+ln(x2-x1+1),又x2-
1)对f(x)求导得:f‘(x)=e^x/e^x+1+1/2x^2因为f‘(x)>o在x不等于0时恒成立所以f(x)在x不等于0的前提下单调递增.故增区间为(负无穷大,0)和(0,正无穷大)又验证f(
(1)f′(x)=11+x-1(1+x)2=x(1+x)2,x>-1当-1<x<0时,f′(x)<0,f(x)在(-1,0)上单调递减,当x=0时,f′(x)=0,当x>1时,f′(x)>0,f(x)
非奇非偶f(1)=1.6269f(-1)=2.6269.
题目:已知函数f(x)=2lnx-x^2.如果函数g(x)=f(x)-ax的图像与x轴交于两点A(x1,0),B(x2,0),且00上单调递减,得g'(px1+qx2)=0成立.结合已知可得2lnx1
∵f(x)是偶函数∴f(-x)=f(x)即ln[1+e^(2x)]+ax=ln[1+e^(-2x)]-axln[1+e^(2x)]-ln[1+e^(-2x)]=-2ax2ax=ln[1+e^(-2x)
这一题你先展开式子,得-x-In(-x)+In(-x)/x,再把x=-e带入,再求出函数的单调性,就能得出答案了,因为我是抢答,要在5分钟之内打完字,我打字速度慢,所以解释的不详细,再答:可以用导函数
1.f'(x)=e^x-1/(x+1),f'(0)=0,f''(x)=e^x+1/(x+1)^2>0,f'(x)为(-1,+∞)上的增函数,所以x>0时,f'(x)>f'(0)=0,f(x)在(0,+
1.f’(x)=2x+a/(1+x)=0,2x^2+2x+a=0有不等的实根,4-8a>0,a
首先判断奇偶要看定义域是否关于原点对称,只有在对称情况下才能接下来判断定义域e^x-e^(-x)>0e^x>e^(-x)x>-x2x>0x>0定义域都不关于原点对称,∴是非奇非偶函数这是个复合函数外面
f(x)=ln1/x-ax2+x(a>0)的定义域是x>0.f'(x)=-1/x-2ax+1=(-2ax^2+x-1)/x=[-2a(x-1/4a)^2+1/8a-1]/x当a>=1/8,即1/8a-
再问:第二问呢......再答:手打啊,慢,正在打,稍等,呵呵