函数f(x,y)=1-x²-y²,在驻点(0.0)取

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:57:44
函数f(x,y)=1-x²-y²,在驻点(0.0)取
函数f(x)对一切实数x,y均有f(x+y)-f(x)=(x+2y=1)成立,且f(x)=0

令x=1-y,f(x+y)-f(y)=f(1)-f(y)=(1-y+2y+1)(1-y)=-y^2-y+2,而f(1)=0,故f(x)=x^2+x-2.当x大于等于0小于等于1/2时,f(x)+3

f(x)是定义于R上的函数,满足两个条件f(x+y)=f(x)f(1-y)+f(1-x)f(y).)

(1)令x=0,y=0则f(0)=f(0)f(1)+f(1)f(0)即f(0)=2f(0)f(1)解得f(0)=0或者f(1)=1/2令x=1,y=0则得f(1)=f(1)f(1)+f(0)f(0)上

函数f(x)对任意实数x,y有f(x+y²)=f(x)+2[f(y)]²,且f(1)不等于0,求f(

f(0)=f(0)+2f(0)^2,f(0)=0,f(0+1^2)=f(0)+2f(1)^2,f(1)=1/2,f(2013)=f(2012+1^2)=f(2012)+2f(1)^2=f(2012)+

已知:函数f(x)对一切实数x,y都有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0

(1)令x=-1,y=1,则由已知f(0)-f(1)=-1(-1+2+1)∴f(0)=-2(2)令y=0,则f(x)-f(0)=x(x+1)又∵f(0)=-2∴f(x)=x2+x-2(3)不等式f(x

已知:函数f(x)对一切实数x,y都有f(x+y)-f(y)=x(x+2y+1)成立,切f(1)=0

(1)f(0)=-2(2)f(x)=x^2+x-2(3)由题意得,x^2+x-2+3-2x

已知:函数f(x)对一切实数x,y都有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0.

x=1,y=0f(x+y)-f(y)=x(x+2y+1)f(1)-f(0)=2f(0)=-2(2)y=0f(x)-f(0)=x(x+1)f(x)=x^2+x-2

已知函数f(x)满足f(2)=1/2,2f(x)f(y)=f(x+y)+f(x-y),则f(2012)=?

令y=2,根据f(2)=1/2,2f(x)f(y)=f(x+y)+f(x-y)有f(x)=f(x+2)+f(x-2)x=2010f(2010)=f(2012)+f(2008)x=2008f(2008)

函数f(x)对一切实数x,y均有f(x+y)-f(x)=(X+2Y+1)X成立,且f(1)=0.

(Ⅰ)令y=0,x=1代入已知式子f(x+y)-f(y)=(x+2y+1)x得f(1)-f(0)=2,∵f(1)=0,∴f(0)=-2;(Ⅱ)在f(x+y)-f(y)=(x+2y+1)x中令y=0得f

若函数f(x)定义域为N,且f(x+y)=f(x)+f(y)+xy,f(y)=1,求f(x)的表达式

令y=1,所以f(x+1)=f(x)+f(1)+x,f(1)=1所以f(x+1)=f(x)+x+1再令上式中x=1,2,3...,n-1得f(2)=f(1)+2f(3)=f(2)+3f(4)=f(3)

若函数f(x)是可导函数,求函数y=f(1/x)的导数 -f'(x)/x^2 )

复合函数求导啊.f(1/x)'=f(x)'*(1/x)'=-f(x)'/x^2再问:为什么不是f(1/x)再答:对哦。链式法则:若h(x)=f(g(x))则h'(x)=f'(g(x))g'(x)

已知函数f(x)对一切实数x、y都有f(x+y)-f(y)=(x+2y+1)x成立,且f(1)=0

(1)∵f(x+y)-f(y)=(x+2y+1)x∴f(1+0)-f(0)=(1+2*0+1)*1即f(1)-f(0)=2∵f(1)=0∴f(0)=-2(2)∵f(x+y)-f(y)=(x+2y+1)

已知函数f(x)对一切实数x,y均有f(x+y)-f(y)=(x+2y+1)*x成立,且f(1)=0

(1)令x=1y=0带入原式得f(0)=-2(2)令y=0带入原式得f(x+0)-f(0)=(x+2*0+1)*x所以f(x)=x平方+x-2将f(x)带入不等式得a>x平方-x+1当0

已知函数y=f(x)满足f(x)=2f(1x

∵f(x)=2f(1x)+x,∴f(1x)=2f(x)+1x,联立两式消去f(1x),可得f(x)=−23x−x3(x≠0)故答案为:f(x)=−23x−x3(x≠0)

f(x)是定义于R上的函数,满足两个条件f(x+y)=f(x)f(1-y)+f(1-x)f(y)...

f(x+y)=f(x)f(1-y)+f(1-x)f(y),设x=y=1/3,f(1/3+1/3)=f(1/3)f(1-1/3)+f(1-1/3)f(1/3),f(2/3)=f(1/3)f(2/3)+f

已知函数对一切x.y都有f(x+y)=f(x)+f(y)

(1)令XY为0,则f(x+y)=f(x)+f(y)f(0)=f(0)+f(0)所以f(0)=0再令Y=-X所以f(x-x)=f(x)+f(-x)所以f(x)=-f(-x)即f(x)是奇函数(2)因f

函数y=f(x)对于任意正实数x,y都有f(xy)=f(x)×f(y).当x>1时,f(x)0)

证明:(1)令x=y=1则f(1)=f(1)*f(1),故f(1)=0或1若f(1)=0,则f(2*1)=f(2)=f(2)f(1)=0,与已知条件矛盾,故f(1)=1令y=-x,则f(1)=f(x)

设函数f(x)对一切实数x,y满足f(xy)=xf(y)+yf(x)-xy且|f(x)-x|≤1,求函数f(x).

令g(x)=f(x)-xg(xy)+xy=x(g(y)+y)+y(g(x)+x)-xyg(xy)=xg(y)+yg(x)令x=0,g(0)=yg(0),g(0)=0若存在|a|>=1使得g(a)不等于

已知函数f(x)满足f(1)=1/4,f(x)+f(y)=4f(x+y/2)*f(x-y/2)则f(-2011)=?

f(x)=f(x+1)+f(x-1)f(x+1)=f(x)+f(x+2)上面两个式子联立,f(x+2)=-f(x-1)即f(x)=f(x+6)f(2010)=f(0)4f(1)f(0)=f(1-0)+

谁能用mathematica解函数方程f[x+y] == f[x + 1]-f[y-1],f[y-x]==f[x]-f[

是我错觉吗,我总觉得以前答过一道几乎相同的题……首先得说明一下,就我所知Mathematica里应该还没有专求这类问题的函数——话说对于一般化的此类问题真的会有通用解法吗……我表示怀疑.然后再来说你这

二元函数f(x,y)=x+y/x-y,求f(y/x,x/y)

假设:X=Y/XY=X/Y带入函数就是:F(y/x,x/y)=(y/x+x/y)/(y/x—x/y)=x²+y²)/(y²-x²)希望可以帮助你!