函数fx x属于R若对于任意实数a b 都有fa b=fa fb

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:02:09
函数fx x属于R若对于任意实数a b 都有fa b=fa fb
设函数f(x)=ax^2+bx+1(a,b属于R) (1)若f(-1)=0,对于任意实数x,f(x)大于等于0都成立,求

f(-1)=a-b+1=0a=b-1(1)若a=0则b=1f(x)=x+1x0Δ=b^2-4a≤0b^2-4b+4≤0(b-2)^2≤0b=2∴a=1∴f(x)=x^2+2x+1综上f(x)=x^2+

已知定义在实数集上的函数y=f(x)满足条件:对于任意的x,y属于R,f(x+y)=f(x)+f(y),求证若当x>=0

若当x≥0时,f(x)<0,试判断函数f(x)在R上的单调性,并证明设x1,x2∈R,x1>x2所以f(x1-x2)=f(x1)+f(-x2)=f(x1)-f(x2)因为x1-x2>0,所以f(x1-

设函数f(x)=ax^3-3x+1(x属于R),若对于任意的x属于(0,1】都有f(x)大于等于0成立,则实数a的取值范

对于任意的x属于(0,1】都有f(x)大于等于0成立即ax³≥3x-1,a≥3/x²-1/x³总成立设g(x)=3/x²-1/x³,00,g(x)递增

一道关于指数函数的题函数f(x),x属于R,若对于任意实数x1,x2都有f(x1+x2)+f(x1-x2)=2f(x1)

令x2=0,得到2f(x1)=2f(x1)*f(0)除非对于任意x1,f(x1)=0否则一定存在x1,使得f(x1)不等于0此时可算出f(0)=1简单的说就是,如果f(0)=0,那么对于所有的x,f(

函数f(x),x属于R,若对于任意实数x1,x2,都有f(x1+x2)+f(x1-x2)=2f(x1)*f(x2),求证

证明:令x2=0,则原等式化为:f(x1+0)+f(x1-0)=2f(x1)*f(0)f(x1)+f(x1)=2f(x1)*f(0)2f(x1)=2f(x1)*f(0)可得f(0)=1.令x1=0,则

函数F(X),X属于R,若对于任意实数X1,X2,都有F(X1+X2)+F(X1-X2)=2F(X1)乘F(X2),求证

要证明的话,要主任给你讲设X2=0,2F(x1)=2F(x1)F(0)可得F(0)=1设x1=0F(x2)+F(-x2)=2F(0)*F(x2),把F(0)=1代入F(x2)+F(-x2)=2F(x2

函数f(x),x属于R,若对于任意实数a,b,都有f(a+b)+f(a-b)=2f(a)*f(b),求证f(x)为偶函数

证明:f(a+b)+f(a-b)=2f(a)f(b)b=0,2f(a)=2f(a)f(0)若f(a)=0,a是任意实数,则f(x)=0,显然是偶函数;若f(a)不等于0,则f(0)=1再令a=0,f(

证明:函数f(x),x属于R,若对于任意实数a,b,都有f(a+b)=f(a)+f(b),求证f(x)为奇函数

证明:①因为x∈R,所以定义域满足要求;②令a=b=0,则有:f(0)=f(0)+f(0)→f(0)=0;③令a=-b,则有:f(0)=f(a)+f(-a)=0即:对任意a∈R,有:f(-a)=-f(

函数f(x),x属于R,若对于任意实数a,b都有f(a+b)=f(a)+(b)求证f(x)为奇函数

f(0+0)=f(0)+f(0),所以f(0)=0;f(a+(-a))=f(a)+f(-a),所以f(a)+f(-a)=f(0)=0.所以f是奇函数.

已知函数f(x)=x^2-2x+5,若存在一个实数m,使不等式m+f(x)>0对于任意x属于R恒成

我做在纸上,传上来.再答:是求m的范围吧?再问:再问:不是那是第二问再答:再答:用分离变量求较简单,两题有明显的不同。再答:第一问求m的范围比较好,你其实也可说明理由:f(x)min=4>0只需m>0

函数f(x),x属于R 且f(x)不恒为0 若对于任意实数x1,x2,都有f(x1+x2)+f(x1-x2)=2f(x1

令x1=t(t∈R),x2=0则有f(t+0)+f(t-0)=2f(t)*f(0)f(t)+f(t)=2f(t)*f(0)2f(t)=2f(t)*f(0)f(0)=1令x1=0,x2=t(t∈R)则有

函数F(X),X属于R,若对于任意实数X1,X2都有F(X1+X2)+F(X1-X2)=2F(X1)F(X2)求证F(X

令x1=x2=0则2f(0)=2f(0)²若f(0)=0则令x2=02f(x1)=0则对于任意值f(x)均为0显然此时f(x)为偶函数若f(0)=1令x1=0则f(x2)+f(-x2)=2f

定义在实数集R上的函数f(x),对于任意的x,y属于R有f(x+y)+f(x-y)=2f(x).f(y) 且f(0)不等

1.令x=y=0,则有f(0)+f(0)=2f(0)²,又因为f(0)不等于0,所以f(0)=12.令x=0,则有f(y)+f(-y)=2f(0)*f(y),即f(y)+f(-y)=2f(y

复合函数单调性问题!设函数y=f(x)定义在R上,当x>0时y=f(x)>1,且对于任意实数a,b属于R,有f(a+b)

设x10所以f(x2-x1)>1所以f(x2)/f(x1)>1若a,b>0因为f(a)/f(b)=f(a-b)>0a-b可以取任意实数,所以f(x)>0所以f(x1)>0所以f(x2)>f(x1)即函

已知二次函数fx=ax^2-3x+1(x属于R)若对于任意x属于【-1,1】,都有fx>=0,则实数a的值为多少

这个要分类讨论,有四种情况,但要首先将该抛物线顶点坐标写出来,其实顶点坐标的x其实就是抛物线的对称轴,a大于0开口向上,然后然后让对称轴在-1的左边,并联立不等式组,然后让对称轴在1的右边,并联立不等

已知定义在R上的函数满足:对于任意的实数x y 恒有f(xy)=xf(y)+yf(x).且f(2)=2 则对于n属于正整

f(1)=1*f(1)+1*f(1)=2*f(1)->f(1)=0f(1)=f(-1*-1)=-2f(-1)->f(-1)=0f(-2^n)=-f(2^n)+2^n*f(-1)=-f(2^n)f(2^

定义在R上的函数y=f(x)具有以下性质①对任意x属于R都有f(x^3)=f^3(x)②对于任意实数x1.x2.x1不等

f(0)=[f(0)]^3f(1)=[f(1)]^3f(-1)=[f(-1)]^3x=x^3,x=0,1,-1故:f(0)+f(1)+f(-1)=0+1-1=0

设a是实数,f(x)=a-2/2^x +1(x属于R)试证明对于任意a,f(x)为增函数

假设X1>X2则f(x1)-f(x2)=a-2/2^x1+1-a+2/2^x2-1=2/2^x2-2/2^x1=(2^(x1+1)-2^(x2+1))/2^(x1*x2)因为x1>x2所以x1+1>x

对于函数f(x),若存在x0属于R,使f(x0)=x0,则称x0为函数f(x)的不动点,若对任意实数b,f(x)=ax^

f(x)=ax^2+bx-b总有两个相异不动点ax^2+bx-b=x方程ax^2+(b-1)x-b=0有不相同的两根,Δx=(b-1)^2+4ab>0b^-2(1-2a)b+1>0因为b是任意的所以Δ