函数fx=3的-x平方 4x-3的值域

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 14:05:40
函数fx=3的-x平方 4x-3的值域
已知函数f(x+1)+f(x)=2x平方-2x-3,求fx的解析式

由已知可知f(x)为二次函数设f(x)=ax^2+bx+c那么f(x+1)+f(x)=a(x+1)^2+b(x+1)+c+ax^2+bx+c=2ax^2+2(a+b)x+a+b+2c即2ax^2+2(

fx=x的三次方-6x的平方+⑨x-3求函数的极值

f(x)=x^3-6x^2+9x-3f'(x)=3x^2-12x+9=3(x^2-4x+3)=3(x-1)(x-3)令f'(x)=0得x1=1,x2=3随x变化,f'(x),f(x)变化如下:x(-∞

已知函数fx满足f(2x+1)=x^2+3x-5,求函数fx的解析式

再问:已知函数fx满足3f(x)-2f(1-x)=2x+3,求解析式

已知函数fx=log1+根号2(x+根号x平方+1)求fx的定义域

2(x+根号x平方+1)大于等于0即可再一步一步拆根式注意根式内大于等于0但是整个函数的真数必须大于0.奇偶性的话看f(x)与f(-x)的关系相加为零为奇函数相等为偶函数.其余情况为非奇非偶函数.单调

已知函数Fx=e的x次方+2x的平方-3x.(1)判断Fx在区间【0,1】上极值点情形及个数

求导f·x=e的x次方+2x-3令导函数=0不好解令gx=的x次方+2xhx=-3显然,一个是增函数,一个是常函数且只有一个交点,但是不在(0,1)范围内因为g0=1>-3所以在范围内没有极值点

已知函数fx=x的平方+3x+5分之11,则函数的值域是

设g(x)=x2+3x+5,则f(x)=11/g(x).因为g(x)=x2+3x+5=(x+3/2)2+11/4≥11/4,所以0<f(x)≤4,即函数f(x)的值域是(0,4】.

已知函数f(x)=x的三次方-m*x的平方,其中m为实数,(1)函数fx在x-1处的切线斜率为1/3,求m(2)求fx的

(1)f(x)=x^3-mx^2,f'(x)=3x^2-2mx,f'(1)=3-2m=1/3,m=4/3.f(x)=x^3-4x^2/3(2)f'(x)=3x^2-8x/3=x(9x-8)/3当x≤0

已知函数fx=ax+b分之x平方,ab为常数,且方程fx-x+12=0有两个实数为3 4的根,求

题目已知函数f(x)=ax+b分之x²(a,b为常数)且方程f(x)-x+12=0有两个实根为x1=3,x2=4求(1)函数f(x)的解析式(2)设k>1,解关于x的不等式f(x)<[(k+

设函数fx=|2x+1|-|x-4|(1)将函数fx写为分段函数的形式(2)画出函数fx的图像(3)写出函数fx的单调区

x再问:能否给一下详细过程?再答:就是分别讨论一下,分别另2x+1=0;x-4=0;得到x=-1/2x=4然后分开看当x=-1/2时|2x+1|=2x+1x=4时|x-4|=x-4然后把x综合一下看看

已知函数fx=2COS2X+sin平方X-4COSX,求FX的最大值与最小值

fx=4cos²x-2+1-cos²x-4cosx=3cos²x-4cosx-1令t=cosx则-1≤t≤1即求[3t²-4t-1]的最值

已知函数fx=2倍的根号3sinxcosx 2cosx的平方减1(x属于R)求函数fx的最小正周期.

fx=2√3sinxcosx+2cos^2x-1=√3sin2x+cos2x=2(√3/2sin2x+1/2cos2x)=2sin(2x+π/6)所以最小正周期是π建议你再看看二倍角公式

已知函数fx=x|x-m|+2x-3(m∈R)若m=4,求函数fx在区间[1,5]的值域

(1)m=4,则函数f(x)=x|x-4|+2x-3,当x-4>0时,f(x)=x^2-2x-3,定义域x(4,5],f(x)最小值=1,若x=5,则f(x)最大值=12;当x-40时,f(x)>=1

求函数fx=x三次方-3x平方+1在区间【~2,4】上的最大值和最小值

f'(x)=3x²-6x令f'(x)=0,解得 x=0或x=2令f'(x)>0,解得x>2或x

求函数fx=2x的平方-3x-2分之根号下负x的定义域

其中一半在外面吗?为y=(x的平方)1,域:-X下X^2-3X+4)/2(X^2表示平方根^2-3X+4>=0即(+4)(X-1)

已知函数fx=sin(2x+π/3)(1)求函数y=fx的

解1当2kπ-π/2≤2x+π/3≤2kπ+π/2,k属于Z时,y是增函数即2kπ-5π/6≤2x≤2kπ+π/6,k属于Z时,y是增函数即kπ-5π/12≤x≤kπ+π/12,k属于Z时,y是增函数

求函数fx=x的平方-2|x|-3的单调区间

一看是偶函数所以讨论x>0情况就可以了(0,1)递减(1,无穷)递增因为是偶函数(无穷,-1)递减(-1,0)递增

已知函数fx=-x的平方+4x+a,x属于[0,1],若fx的最小值为-2,则fx的最大值是多少

解f(x)=-x²+4x+a=-(x²-4x)+a=-(x²-4x+4)+4+a=-(x-2)²+4+a对称轴为x=2,开口向下∴在x∈[0.1]上,f(x)是