函数u=x^2-y^2 z^2在点M(1,0,1)沿()方向的方向导数最大?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:55:20
3f(x)+f(-1/x)=2x-x(1)令x=-1/x则3f(-1/x)+f(x)=2/x+1/x(2)(1)×3-(2)8f(x)=6x-3x-2/x+1/x所以f(x)
令u=x-y,v=y/xaz/ax=az/au×au/ax+az/av×av/ax=fu-y/x^2×fva^2z/axay=a(az/ax)/ay=a(fu-y/x^2×fv)/ay=a(fu)/a
这是复合函数的导函数的利用δz/δx=2xyf'/f²δz/δy=[f+yf'(-2y)]/f²=(f-2y²f')/f²1/x×δz/δx+1/y×δz/δy
F对各分量的偏导依次记为F1,F2,F3.方程对x求偏导得F1·(2u·∂u/∂x-2x)+F2·2u·∂u/∂x+F3·2u·∂u/
x^2+y^2+z^2-3xyz=0两边对x求偏导,2x+2z*dz/dx-3yz-3xydz/dx=0从中解得:dz/dx=(3yz-2x)/(2z-3xy)(1)同理:dz/dy=(3xz-2y)
由柯西不等式(a^2+b^2+c^2)(x^2+y^2+z^2)>=(ax+by+cz)^2,得((1/√2)^2+(1/√3)^2+1)(2x^2+3y^2+z^2)>=(x+y+z)^22x^2+
z=y/f(x^2-y^2)ðz/ðx=y(-2xf'/f^2)ðz/ðy=1/f+y(2yf'/f^2)(1/x)*(ðz/ðx)=-2yf'/f^2
怎么是u-v啊?觉得应该是实部虚部是两个式子吧验证两者满足二维拉普拉斯方程后用柯西黎曼方程,然后求积分吧u-v的话我也看不懂…
v'y=2x,因此u'x=v'y=2x,积分得u=x^2+g(y),又由于u'y=-v'x,所以g'(y)=-2y,g(y)=-y^2+c,故u=x^2-y^2+c,f(z)=x^2-y^2+c+2i
σu/σx=(z+y)+x(σz/σx+0)=z+y+xcos(x+y)σ2u/σxσy=σz/σy+1-xsin(x+y)=cos(x+y)+1-xsin(x+y)
偏导数x=cos(x^2+y^2+z^)*2x同理想y,z的偏导数只是把cos()外边的x换成相应的y,z即可
没有分只好告诉你思路了不过你要给我采纳设P=6xy^2-y3Q=6x^2y-3xy^2然后求P对xQ对y的导数看是否P=Q,等于得话就是与路径无关直接求即可不等于得话就得设特殊路径最后记得补上一个L:
设F=x^2/a^2+y^2/b^2+z^2/c^2-1则其法线方向为:(Fx,Fy,Fz)=(2x/a²,2y/b²,2z/c²),此方向就是外法线方向将(2x/a
dz/dx=dz/du*(du/dx)=2u*1=2udz/dy=dz/du*(du/dy)=2u*1=2u和v没关系
①偏z/偏x=偏z/偏u偏u/偏x+偏z/偏v偏v/偏x=(2uv-v^2)siny+(2uv-v^2)cosy=(2x^2sinycosy-x^2(cosy)^2)siny+(2x^2sinycos
这个是多个参数的全微分的求法du=(2xdx+2ydy+2zdz)/(x^2+y^2+z^2)
由链式法则知道:再问:就你懂我是什么意思了!!激动地哭死!!但是答案错了。。答案4xyf“(u)再答:怎么求偏导都不会有xy这一项,因为(x^2+y^2)对x求偏导,y就消失了,除非你求混合导就是这个
u'x=2x/(x^2+y^2+z^2)u'y=2y/(x^2+y^2+z^2)u'z=2z/(x^2+y^2+z^2)du=2xdx/(x^2+y^2+z^2)+2ydy/(x^2+y^2+z^2)
1)拉格朗日乘子法在处理完全约束的情况下,如果u在限定条件φ=0下最值存在,是一定可以找到的.2)-4)这里有一个关键点你弄错了,原限定曲面φ(x,y,z)=0是没有边界的,之所以出现了边界,是因为你
对等式两边求全微分du=【1/(2x+3y+4z^2)】【2dx+3dy+8zdz】