函数u=x^2-y^2 z^2在点M(1,0,1)沿()方向的方向导数最大?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:55:20
函数u=x^2-y^2 z^2在点M(1,0,1)沿()方向的方向导数最大?
已知调和函数u=e^xcosy+x^2-y^2+x 求解析函数f(z)=u+iv

3f(x)+f(-1/x)=2x-x(1)令x=-1/x则3f(-1/x)+f(x)=2/x+1/x(2)(1)×3-(2)8f(x)=6x-3x-2/x+1/x所以f(x)

设函数z=f(u,v)具有二阶连续偏导数,z=f(x-y,y/x),求a^2z/axay

令u=x-y,v=y/xaz/ax=az/au×au/ax+az/av×av/ax=fu-y/x^2×fva^2z/axay=a(az/ax)/ay=a(fu-y/x^2×fv)/ay=a(fu)/a

设Z=y/f(x^2-y^2),其中f(u)为可导函数,验证1/X乘δz/δx + 1/y乘δz/δy =z/y^2

这是复合函数的导函数的利用δz/δx=2xyf'/f²δz/δy=[f+yf'(-2y)]/f²=(f-2y²f')/f²1/x×δz/δx+1/y×δz/δy

设F为三元可微函数,u=u(x,y,z)是由方程F(u^2-x^2,u^2-y^2,u^2-z^2)=0确定的隐函数,求

F对各分量的偏导依次记为F1,F2,F3.方程对x求偏导得F1·(2u·∂u/∂x-2x)+F2·2u·∂u/∂x+F3·2u·∂u/

设u=f(x,y,z)=xy^2z^3,期中z是方程x^2+y^2+z^2-3xyz=0所确定的x,y的函数,求u对下的

x^2+y^2+z^2-3xyz=0两边对x求偏导,2x+2z*dz/dx-3yz-3xydz/dx=0从中解得:dz/dx=(3yz-2x)/(2z-3xy)(1)同理:dz/dy=(3xz-2y)

设x+y+z=11求函数u=2x*x+3y*y+z*z的最小值

由柯西不等式(a^2+b^2+c^2)(x^2+y^2+z^2)>=(ax+by+cz)^2,得((1/√2)^2+(1/√3)^2+1)(2x^2+3y^2+z^2)>=(x+y+z)^22x^2+

多元复合函数求导题目z=y/f(x^2-y^2),其中f(u)为可导函数,验证(1/x)*(ðz/ðx)

z=y/f(x^2-y^2)ðz/ðx=y(-2xf'/f^2)ðz/ðy=1/f+y(2yf'/f^2)(1/x)*(ðz/ðx)=-2yf'/f^2

已知u-v=x^2-y^2,试求解析函数f(z)=u+iv

怎么是u-v啊?觉得应该是实部虚部是两个式子吧验证两者满足二维拉普拉斯方程后用柯西黎曼方程,然后求积分吧u-v的话我也看不懂…

已知调和函数V(x,y)=2xy,求函数u(x,y)和解析函数f(z)=u+iv,使f(i)=-1

v'y=2x,因此u'x=v'y=2x,积分得u=x^2+g(y),又由于u'y=-v'x,所以g'(y)=-2y,g(y)=-y^2+c,故u=x^2-y^2+c,f(z)=x^2-y^2+c+2i

u=x(z+y) z=sin(x+y) 求二阶偏导数σ2u/σxσy

σu/σx=(z+y)+x(σz/σx+0)=z+y+xcos(x+y)σ2u/σxσy=σz/σy+1-xsin(x+y)=cos(x+y)+1-xsin(x+y)

求函数的偏导数:u=sin(x^2+y^2+z^2)

偏导数x=cos(x^2+y^2+z^)*2x同理想y,z的偏导数只是把cos()外边的x换成相应的y,z即可

函数在u=x^2+y^2+z^2,在(1,1,1)处沿z轴正向的方向导数

没有分只好告诉你思路了不过你要给我采纳设P=6xy^2-y3Q=6x^2y-3xy^2然后求P对xQ对y的导数看是否P=Q,等于得话就是与路径无关直接求即可不等于得话就得设特殊路径最后记得补上一个L:

求函数u=x^2+y^2+z^2在椭球面x^2/a^2+y^2/b^2+z^2/c^2=1上点M.(x.,y.,z.)处

设F=x^2/a^2+y^2/b^2+z^2/c^2-1则其法线方向为:(Fx,Fy,Fz)=(2x/a²,2y/b²,2z/c²),此方向就是外法线方向将(2x/a&#

设二元函数 z=u^2,u=x+y v=x-y ,求dz/dx,dz/dy

dz/dx=dz/du*(du/dx)=2u*1=2udz/dy=dz/du*(du/dy)=2u*1=2u和v没关系

求函数偏导设z=u^2v-uv^2,而u=xsiny,v=xcosy,求偏z/偏x和偏z/偏y

①偏z/偏x=偏z/偏u偏u/偏x+偏z/偏v偏v/偏x=(2uv-v^2)siny+(2uv-v^2)cosy=(2x^2sinycosy-x^2(cosy)^2)siny+(2x^2sinycos

设函数u=In(x^2+y^2+z^2),求du.

这个是多个参数的全微分的求法du=(2xdx+2ydy+2zdz)/(x^2+y^2+z^2)

设函数z=f(u) u=x^2+y^2 且f(u)二阶可导 则∂^2*z/∂x^2=?

由链式法则知道:再问:就你懂我是什么意思了!!激动地哭死!!但是答案错了。。答案4xyf“(u)再答:怎么求偏导都不会有xy这一项,因为(x^2+y^2)对x求偏导,y就消失了,除非你求混合导就是这个

求下列函数的全微分u=ln(x^2+y^2+z^2)

u'x=2x/(x^2+y^2+z^2)u'y=2y/(x^2+y^2+z^2)u'z=2z/(x^2+y^2+z^2)du=2xdx/(x^2+y^2+z^2)+2ydy/(x^2+y^2+z^2)

拉格朗日乘数法问题求 u=x^2+y^2+z^2 在 φ(x,y,z)=(x-y)^2 - z^2 - 1 = 0 条件

1)拉格朗日乘子法在处理完全约束的情况下,如果u在限定条件φ=0下最值存在,是一定可以找到的.2)-4)这里有一个关键点你弄错了,原限定曲面φ(x,y,z)=0是没有边界的,之所以出现了边界,是因为你

求函数u=ln(2x+3y+4z^2)的全微分du

对等式两边求全微分du=【1/(2x+3y+4z^2)】【2dx+3dy+8zdz】