函数y=3e^2x是方程y^n-4y=0的
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 16:06:09
xy+e^y=y+1(1)求d^2y/dx^2在x=0处的值:(1)两边分别对x求导:y+xy'+e^yy'=y'y/y'+x+e^y=1(2)(2)两边对x再求导一次:(y'y'-yy'')/y'^
x=0时代入方程,得:0-1+3y=0,故y(0)=1/3方程两边对x求导:1/√(1-x^2)*lny+arcsinx*y'/y-2e^2x+3y'=0得:y'=[2e^2x-lny/√(1-x^2
对方程两边同时求导得,﹣﹙y+xy′﹚sin﹙xy﹚+e^y+﹙x+1﹚y′e^y=0令x=0则方程cos(xy)+(x+1)*e^y=2为1+e^y=2,得y=0,即切点坐标为﹙0,0﹚将﹙0,0﹚
e^(-xy)-2z+e^z=0-ye^(-xy)-2z'(x)+e^zz'(x)=0z'(x)=ye^(-xy)/(e^z-2)-xe^(-xy)-2z'(y)+e^zz'(y)=0z'(y)=xe
x^2e^y+y^2=1两边对x求导得2xe^y+x^2e^y*y'(x)+2y*y'(x)=0故y'(x)=-2xe^y/(x^2e^y+2y)所以dy/dx│(1,0)=-2*1*e^0/(1^2
不就是对x求导吗?把y看成中间变量y=y(x)说明要想导x要通过y这个中间变量两边对x求导:y^3+(3x*y^2)*dy/dx+(e^x)*siny+(e^x)*cosy*dy/dx=1/x下面你自
这个题目要用到微分的形式不变性e^y*dy+d(xy)=0e^y*dy+xdy+ydx=0-ydx=(x+e^y)dydy=-y*dx/(x+e^y)
e^(x+y)-3x=2y^2-5=0(1+dy/dx)e^(x+y)-3=4ydy/dxdy/dx=(e^(x+y)-3)/(4y-e^(x+y))
网上有很多高数课后习题答案,你可以下载一个参考~e^y-e^x=xy两边求导,得e^y*y'-e^x=y+xy'(e^y-x)y'=(e^x+y)所以y'=(e^x+y)/(e^y-x)x=0时,原式
大致能看清楚吧,就是把原式转化成e^xsinydx+(e^xcosy+2y)dy=o这个全微分方程,然后用全微分方程的方法做,答案是e^xsiny+y^2=C
分别对y求导,求左边为1+【e^(x+y)×(dx/dy+1)】右边为2×dx/dy推的dx/dy:自己算下,没得草稿纸.
dz=-dx-dy
两边求导e^y×y'=xy'+yy'=y/(e^y-x)dy/dx=y/(e^y-x)
e^(x+y)=2+x+2y两边同时对x求导e^(x+y)*(1+y')=1+2y',将y(1)=-1;带入,得1+y'(1)=1+2y'(1);则y'(1)=0在同时对两边求导e^(x+y)*(1+
等式两边同时对x求导,化简得到y‘=ysinx/(cosx-2e^2y),就行了,这就是最后的结果.
/>e^y+xy+e^x=0两边同时对x求导得:e^y·y'+y+xy'+e^x=0得y'=-(y+e^x)/(x+e^y)y''=-[(y'+e^x)(x+e^y)-(y+e^x)(1+e^y·y'
两边对x求导xy^2+sinx=e^yy^2+2xyy'+cosx=e^y*y'y'(e^y-2xy)=y^2+cosxy'=(y^2+cosx)/(e^y-2xy)