函数y=cos^2x 2sinx在区间
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:07:50
y=cos^2+1=(cos2x+1)/2+1=(1/2)cos2x+3/2最小正周期为2π/2=π
y=sinxcosx-cos^2x=1/2sin2x-1/2(1+cos2x)=1/2(sin2x-cos2x-1)=1/2[√2*sin(2x-派/4)-1]=√2/2*sin(2x-派/4)-1/
y=(cosx+2)/(sinx-1)ysinx-y=cosx+2ysinx-cosx=y+2√(y²+1)sin(x-t)=y+2,t=arctan(1/y)sin(x-t)=(y+2)/
y=12[1+cos2(x-π12]+12[1-cos2(x+π12]-1=12[cos(2x-π6)-cos(2x+π6)]=sinπ6•sinx=12sinx.T=π.故答案为:π.
应该是y=(cosx)^2吧y=(cosx)^2=(1+cos2x)/2递增区间为cos2x的递增区间[-Pi/2+kPi,kPi]k为整数
y=(sinx+cosx)^2+2cos^x=2+sin2x+cos2x=2+√2sin(2x+π/4)ymax=2+√2,ymin=2-√2.2kπ+π/2≤2x+π/4≤2kπ+3π/22kπ+π
函数Y=cos(2x+φ)(0
这个函数就是一个cos函数,因此值域是[-2,2]再问:x属于(0,π/2)再答:晕,算2x-π/6的值定义域,然后算就可以了
y=1-2(sinx)^2+sinx=-2x^2+x+1(设sinx=x,x属于[-1,1]画图即可最小值f(-1)=-2最大值f(1/4)=9/8值域为[-2,9/8]
y=(sin^2+1)(cos^2+3)=sin^2·cos^2+3sin^2+cos^2+3=sin^2·cos^2+2sin^2+(sin^2+cos^2)+3=sin^2·cos^2+2sin^
(1)y′=(x2)′sinx+x2(sinx)′=2xsinx+x2cosx.(2)y′=1x+1+x2•(x+1+x2)′=1x+1+x2(1+x1+x2)=11+x2.(3)y′=(ex+1)′
y=cos^2x+sinx=1-2(sinx)^2+sinx=-2(sinx-1/4)^2+9/8因为|x|
y=cos²(2x)=cos²2x-1/2+1/2=(cos4x)/2+1/2最小正周期=2π/4=π/2
y=sinx+cos^2xy=sinx+1-sin^2(x)y=-(sinx-1/2)^2+5/4因为sinx∈[-1,1]所以y∈[-1,5/4]
最大值是(根号2)-1
y=cosx^2y'=2cosx(COSX)'=-2SINXCOSXy=cos2xy'=-SIN2X(2X)'=-2SIN2X
y=2cos²x-1+1+sin2x=sin2x+cos2x+1=√2(sin2x*√2/2+cos2x*√2/2)+1=√2(sin2xcosπ/4+cos2xsinπ/4)+1=√2si
y=cos(1−x)2π=cos(π2-x2)=sinπ2x,∴函数的最小正周期T=2ππ2=4.故答案为:4
由2kπ≤2x+π4≤2kπ+π,即kπ-π8≤x≤kπ+3π8,k∈Z故函数的单调减区间为[kπ−π8,kπ+3π8](k∈Z),故答案为:[kπ−π8,kπ+3π8](k∈Z).
∵当x∈[2kπ,2kπ+π](k∈Z)时,f(x)≥0,可排除B;当x∈[2kπ+π,2kπ+2π](k∈Z)时,f(x)≤0,可知函数的图象在x轴两侧摆动,故排除D;又由函数不具有周期性,可排除A