函数y=sin(-2 x-6 π)增区间
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 19:19:31
cosx+sinx=√2(√2/2cosx)+√2(√2/2sinx)=√2(√2/2cosx+√2/2sinx)=√2(sinπ/4cosx+cosπ/4sinx)=√2sin(x+π/4)划一公式
函数的周期T=2πω=2π2=π,由-π2+2kπ≤2x+π3≤π2+2kπ,解得−5π12+kπ≤x≤π12+kπ,即函数的递增区间为[−5π12+kπ,π12+kπ],k∈Z,由2x+π3=π2+
∵y=sin(2x+π3),∴由2kπ−π2≤2x+π3≤2kπ+π2,k∈Z.得kπ-5π12≤x≤kπ+π12,k∈Z.∴当k=0时,递增区间为[0,π12],当k=1时,递增区间为[7π12,π
振幅为2;周期为π;初相为π/3单增区间:kπ-5π/12≦x≦kπ+π/12对称轴:x=﹙1/2﹚kπ+(1/12)π
你把括号里的看成一个整体记作t.这样自变量是t,就是y=sint的简单正弦函数,不同的t对应求出不同的x即可
x=-π/6时,y=0所以,关于点(-π/6,0)对称选B
y=cosx•sin(x+π2)=12[sin(2x+π2)-sin(-π2)]=12cos2x+12∴T=2π2=π故答案为π再问:为什么cosx)^2=(cos2x+1)/2?看不太懂...
我列个去,就算我高中毕业到现在已经8年了,我也看的出来1楼的乱说的撒,值域明显是[-2,2]嘛
∵-π6<x<π6,∴0<2x+π3<2π3,根据正弦函数的性质,则0<sin(2x+π3)≤1,∴0<2sin(2x+π3)≤2∴函数y=2sin(2x+π3) (-π6<x<π6)的值域
∵π3≤x≤3π4∴π3≤2x−3π4≤7π6,根据正弦函数图象则−12≤sin(2x−π3) ≤1,故答案为[−32,3].
令2kπ-π2≤2x-π6≤2kπ+π2,k∈z,解得kπ-π6≤x≤kπ+π3,故函数y=2sin(2x−π6)的单调递增区间是[kπ-π6,kπ+π3],k∈z,故答案为[kπ-π6,kπ+π3]
∵函数表达式为y=3sin(2x+π4),∴ω=2,可得最小正周期T=|2πω|=|2π2|=π故答案为:π
因为,-π/2
把函数y=sin(2x−π6)的图象向左平移φ(φ>0)个单位得到函数y=sin(2(x-π12+φ))的图象,因为函数y=sin(2(x-π12+φ))为奇函数,故-π12+φ=kπ,故φ的最小值是
∵0≤x≤π2,∴π6≤x+π6≤2π3;∴当x+π6=π2时,函数取得最大值是y=sin(x+π6)=1;当x+π6=π6时,函数取得最小值是y=sin(x+π6)=12;∴函数y=sin(x+π6
f(x)=sin2(x+y/2)由于sin2x对称轴为π/4+kπ/2;故x+y/2=π/4+kπ/2x=π/4+kπ/2-y/2;将x=x=π/8代入,得y=π/4+kπ,根据y的范围可知:y=-3
令2kπ+π2≤3x+π4≤2kπ+3π2,k∈z,求得2kπ3+π12≤x≤2kπ3+7π36,故函数的减区间为[2kπ3+π12,2kπ3+7π36],k∈Z,故答案为:[2kπ3+π12,2kπ
由题意x∈[0,π2],得x+π3∈[π3,5π6],∴sin(x+π3)∈[12,1]∴函数y=sin(x+π3)在区间[0,π2]的最小值为12故答案为12
对的,还可以:1.将x坐标向左平移π/6个单位2.将x坐标扩大两倍,y坐标不变
函数y=2sin(3x+π/6)当函数y取最大值时有3x+π/6=2kπ+π/2即x=2kπ/3+π/9,k∈Z所以x得集合为{x|x=2kπ/3+π/9,k∈Z}