函数z=xy在闭区域x>=0,y>=0,x y
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:54:14
体积V即以闭域D:x²+y²=a²为底,z=f(x,y)为曲顶的立体的体积∴V=∫∫(D)zdxdy其中D={(x,y)|x²+y²=a²}
空间曲面问题,x>=0,y>=0,x+y0,定义4-x-y=k>0,将y=4-x-k带入FXY,对X求导数=0,得到k=-1.5x,将y=4-x-k,k=4-1.5x,带入FXY,对X求导数=0,得到
你写得不太对吧?x=1,y=0,x+y=6所围区域不是封闭的,不是有界的.是否还要加上x=0这条线啊?再问:对的啊,就是这样的,封闭的啊,不需要加,已经有x=1这条线了再答:不好意思,我想错了。先求内
第一步,找|x|+|y|
e^z-z+xy^3=0偏z/偏x:z'e^z-z'+y^3=0y^3=z'(1-e^z)z'=y^3/(1-e^z)偏z/偏y:z'e^z-z'+3xy^2=0z'=3xy^2/(1-e^z)偏z/
题目中z=0表示的就是xoy平面,画个大概的立体图容易知道,此时所求的区域在Z正半轴,Z>0,当x=y且z=xy时,x=y=0,x=1是x的积分上限,若被积区域在x>1的范围,就不能构成封闭的积分区域
两端对x求偏导得:-ye^(-xy)-2(z/x)+(z/x)e^z=0,所以,z/x=ye^(-xy)/(e^z-2)两端对y求偏导得:-xe^(-xy)-2(z/y)+(z/y)e^z=0,所以,
令v(x,y)=0不就行了么、、、或者u(x,y)在每处的偏导数都存在
...偏z/偏x=-8切线(x-8)/8=(y+8)/1=(z-8)/8,法平面:x+z-8=1(8):应该是抛物线y^8=8x吧抛物线在(8,8...函数z=In(x+y)沿着这抛物现在该点处偏向x
x+y=1=>y=1-xz=xy=x(1-x)=x-x^2对x求导z'=1-2x令z'=0=>1-2x=0=>x=0.5所以,x=y=0.5时z有是大值0.25再问:嗯。thankyou
Z'x=2x-y-1=0Z'y=2y-x-1=0x=1,y=1此极小值点在区间外.因此最值点在边界的顶点上.顶点为(0,-3),(-3,0),(0,0在点(0,0),Z=0在点(0,-3),(-3,0
用拉格朗日定理计算,计算量较大,希望及时采纳.再问:具体方法请你写一下再答:设h(x,y)=e^-xy+N(x^2+4y^2),对此式分别对x,y,n求导。。。。只能讲方法了,实在无法不方便回到,计算
就是求-xy的最大值和最小值.令x=sinay=1/2cosa-xy=-1/4sin2a-xymax=1/4-xymin=-1/4f(x,y)max=e^(1/4)f(x,y)min=e^(-1/4)
累次积分,投影到xoy面上,先对Z积分,积分限(0,xy),再对y积分(0,x),x积分(0,1)=1/28*13
这道题目最关键是要明白各个面的位置关系.大概如下:在x+y=1,x=0,y=0圈起来的空间内,曲面z=xy在平面z=x+y之下(∵xy≤x≤x+y),因而立体在xoy平面上的投影为x+y=1,x=0,
这道题目最关键是要明白各个面的位置关系.大概如下:在x+y=1,x=0,y=0圈起来的空间内,曲面z=xy在平面z=x+y之下(∵xy≤x≤x+y),因而立体在xoy平面上的投影为x+y=1,x=0,
f对x的偏导数=-y·e^-xyf对y的偏导数=-x·e^-xy使这两个偏导数等于0,得x=y=0.即在点(0,0)处取得极大值f(0,0)=1
定义域面积为2x1的矩形,密度总和为1,且均匀分布,则密度函数恒为1/2Fz(z)=P(Z=z)=1-∫(1/2~1)(1/y~2)f(x,y)dxdyf=F'P(A|B)=P(A|B非)所以A的发生
所围成的闭区域是在第一卦限,在z方向的范围:底面为z=0,即为xoy坐标平面,上面即为马鞍形双曲面z=xy.x和y的范围均为从0到与z轴平行的平面x+y=1.所以,z的积分范围为[0,xy]x的积分范
由0≤x≤3,是以y轴和x=3所夹区域,作x-y=0,即y=x和x+y=2,即y=2-x两条直线,可知交点P(1,1)极小值为x=1,y=1∴6x+5y=11,选C.