函数z=z(x,y)由F(xy,z)=x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 01:54:07
函数z=z(x,y)由F(xy,z)=x
设由方程xy+yz+xz=1,确定函数z=f(x,y),求∂2z/∂(x^2)

y+y∂z/∂x+z+x∂z/∂x=0∂z/∂x=-(y+z)/(x+y)∂2z/∂x2=【∂

1、设f可微,写出由方程f ( xy,yz,x-z ) = 0所确定的函数z = g (x,y)的偏导数Z'x和Z'y

df/dx=f'(xy,yz,x-z)(y+y*dz/dx+1-dz/dx)=0(1-y)dz/dx=f'(xy,yz,x-z)*(y+1)dz/dx=f'(xy,yz,x-z)*(y+1)/(1-y

设函数f与g均可微,z=f(xy,lnx+g(xy)),则x*z关于x的微分-y*z关于y的微分=

设u=xy,v=lnx+g(xy),则x(∂z/∂x)-y(∂z/∂y)=∂f/∂v.原因如下:dz=(∂f/

z=f(x,y)是方程e^(-xy)-2z+e^z给出的函数,求全微分dz

e^(-xy)-2z+e^z=0-ye^(-xy)-2z'(x)+e^zz'(x)=0z'(x)=ye^(-xy)/(e^z-2)-xe^(-xy)-2z'(y)+e^zz'(y)=0z'(y)=xe

设函数Z=Z(X,Y) 由方程XY=e^z-z所确定的隐函数,求a^2z/axay

e^y-e^x=xy两边求导,得e^y*y'-e^x=y+xy'(e^y-x)y'=(e^x+y)所以y'=(e^x+y)/(e^y-x)x=0时,e^y-e^0=0,则e^y=1,则y=0所以y'(

设Z=F(X,Y)是由方程E^Z-Z+XY^3=0确定的隐函数,求Z的全微分Dz

对方程两边求全微分得:(e^z-1)dz+y^3dx+3xy^2dy=0(方法和求导类似)移项,有dz=-(y^3dx+3xy^2dy)/(e^z-1)

设z=f(x,y)是由方程e^z-Z+xy^3=0确定的隐函数

e^z-z+xy^3=0偏z/偏x:z'e^z-z'+y^3=0y^3=z'(1-e^z)z'=y^3/(1-e^z)偏z/偏y:z'e^z-z'+3xy^2=0z'=3xy^2/(1-e^z)偏z/

设函数z=z(x,y)是由方程F(x-z,y-z)所确定的隐函数,其中F(u,v)具有一阶连续偏导数,求z(下标x)+z

z(x)+z(y)=-(f(x)+f(y))/f(z)f(x)=f1(1-z(x)-f2z(x))f(y)=-f1z(y)+f2(1-z(y))f(z)=-f1-f2所以z(x)+z(y)=1+z(x

函数z=f(x,y)由方程xy+yz+zx=1所确定,求fxy" .

z对x的偏导xy+yz+zx=1y+yfx'+z+xfx'=0z对y的偏导x+z+yfy'+xfy'=0z对y的偏导1+fx'+yfxy"+fy'+xfxy"=01+(fx'+fy')+(x+y)fx

设z=z(x,y)由方程F(xy,z-2x)=0所确定的隐函数,求

令G(X,Y,Z)=F(xy,z-2x)GZ'=F'2GX'=yF'1-2F'2∂z/∂x=-GX'/GZ'=(2F'2-yF'1)/F'2Gy'=xF'1∂z/&

设函数z=z(x,y)由方程e^(-xy)-2z+e^z=0确定,求z/x,z/y

两端对x求偏导得:-ye^(-xy)-2(z/x)+(z/x)e^z=0,所以,z/x=ye^(-xy)/(e^z-2)两端对y求偏导得:-xe^(-xy)-2(z/y)+(z/y)e^z=0,所以,

设函数z=f(x,y)由方程e^z=xyz+cos(xy)求dz/dx ,dz/dy.求详解

因为x、y都为自变量,不是宗量,故此题没有全微分,应只有偏微分.详解如下:对方程两边微分:左边:de^z=e^z*dz右边d[xyz+cos(xy)]=xydz+yzdx+xzdy-(sinxy)*(

设由方程xy+yz+xz=1,确定函数z=f(x,y),求∂^2z/∂x^2

y+y∂z/∂x+z+x∂z/∂x=0∂z/∂x=-(y+z)/(x+y)y∂2z/∂x2+2ͦ

由方程z=f(x,y∧2,z)所确立的函数z=z(x,y)的全微分是什么

z=f(x,y∧2,z)两边取全微分,dz=f'xdx+(f'y)*2ydy+f'zdz所以dz=[(f'x)/(1-f'z)]dx+[2y(f'y)/(1-f'z)]dy

◆高数 多元函数微分学 证明 "设x = x(y, z),y = y(x, z),z = z(x, y)都是由方程F(x

再问:是否还能给出一种利用题目所给的条件(关于x,y,z的函数)去证明的方法吗?再答:这就是课本上隐函数求导公式的应用,你想得太多了,没有必要的!

3道高数题,1,函数F(x,y,z)=(e^x) * y * (z^2) ,其中z=z(x,y)是由x+y+z+xyz=

1、隐函数对x求导得1+az/ax+yz+xy*az/ax=0,故az/ax=-(1+yz)/(1+xy);F对x求导得aF/ax=e^x*y*z^2+e^x*y*2z*az/ax;当x=0,y=1时

设函数z=f(xy,e^x+y),其中f.,求一阶偏导数?

令u=xy,v=e^(x+y)Z'x=Z'u*U'x+Z'v*V'x=f'u*y+f'v*e^(x+y)Z'y=Z'u*U'y+Z'v*V'y=f'u*x+f'v*e^(x+y)