函数z=z(x.y)由方程e*x-xyz=0确定

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 11:05:47
函数z=z(x.y)由方程e*x-xyz=0确定
关于隐函数求偏导设z=z(x,y)是由方程e^z-xyz=0确定的隐函数,求对x的偏导.

令F=e^z-xyzF对x的偏导数为Fx=-yzF对z的偏导数为Fz=e^z-xy由偏导公式z对x的偏导=-Fx/Fz=yz/(e^z-xy)

设函数Z=Z(X,Y) 由方程XY=e^z-z所确定的隐函数,求a^2z/axay

e^y-e^x=xy两边求导,得e^y*y'-e^x=y+xy'(e^y-x)y'=(e^x+y)所以y'=(e^x+y)/(e^y-x)x=0时,e^y-e^0=0,则e^y=1,则y=0所以y'(

设函数 z=z(x,y)是由方程e^z-xyz=0 所确定的隐函数,求 əz/əy.

对y求导,e^z*z'(y)=xz+xyz'(y),əz/əy=z'(y)=xz/(e^z-xy)

设函数 z=z(x,y)是由方程e^z-xyz=0 所确定的隐函数,求 əz/əy

两边微分e^zdz-yzdx-xzdy-xydz=0(e^z-xy)dz=yzdx+xzdy∂z/∂y=xz/(e^z-xy)=xz/(xyz-xy)=z/(yz-y)

设Z=F(X,Y)是由方程E^Z-Z+XY^3=0确定的隐函数,求Z的全微分Dz

对方程两边求全微分得:(e^z-1)dz+y^3dx+3xy^2dy=0(方法和求导类似)移项,有dz=-(y^3dx+3xy^2dy)/(e^z-1)

设z=z(x,y)由方程x/z=ln(y/z)所确定的隐函数 求∂z/∂y,∂z/&

x=z(lny-lnz)对x求导1=∂z/∂x*(lny-lnz)+z*(0-1/z*∂z/∂x)1=∂z/∂x(lny-lnz

z是由方程x/z=in z/y确定的隐函数,求z的偏x导

你好:两边同时对x求偏导数(z-x(偏z/偏x))/z2=1/z(偏z/偏x)所以偏z/偏x=z/(x+z)

设z=f(x,y)是由方程e^z-Z+xy^3=0确定的隐函数

e^z-z+xy^3=0偏z/偏x:z'e^z-z'+y^3=0y^3=z'(1-e^z)z'=y^3/(1-e^z)偏z/偏y:z'e^z-z'+3xy^2=0z'=3xy^2/(1-e^z)偏z/

设函数z=z(x,y)由方程e^(-xy)-2z+e^z=0确定,求z/x,z/y

两端对x求偏导得:-ye^(-xy)-2(z/x)+(z/x)e^z=0,所以,z/x=ye^(-xy)/(e^z-2)两端对y求偏导得:-xe^(-xy)-2(z/y)+(z/y)e^z=0,所以,

函数z=z(x,y)由方程e^z-xyz=0确定,求偏导时不同方法不同答案

此题两种方法求出的偏导数是相等的,估计题主算错了.方法如下:1:用算出的一阶偏导数求二阶混合偏导数如下:(计算中注意e^z=xyz)2:用题中的方法二计算: 所以两种方法计算结果相同

求由方程e^z=xyz所确定的函数z=z(x,y)的一阶偏导数

对x求导,e^z*z'(x)=yz+xyz'(x),z'(x)=yz/(e^z-xy)对y求导,e^z*z'(y)=xz+xyz'(y),z'(y)=xz/(e^z-xy)

设由方程e^z-xyz=0确定了函数y=y(x),则偏z偏x等于

e^z-xyz=0z=㏑x+㏑y+㏑z[偏z偏x]=1/x+(1/z)[偏z偏x](这里y看成常数)[偏z偏x]=(1/x)/{1-(1/z)}=z/[x(z-1)]

设z=z(x,y)是由方程(e^z)-xyz=0确定的隐函数,求偏导

对X的偏导=yz/(e^z-xy)对Y的偏导=xz/(e^z-xy)

设函数z=z(x,y)由方程x+2y-z=3e^(xy-xz)确定,则dz(0,0)=?

x+2y-z=3e^(xy-xz)两边对x求导,z看成是x的函数求偏导得,y看成常数,得1-əz/əx=3(y-z-xəz/əx)e^(xy-xz)=><

3道高数题,1,函数F(x,y,z)=(e^x) * y * (z^2) ,其中z=z(x,y)是由x+y+z+xyz=

1、隐函数对x求导得1+az/ax+yz+xy*az/ax=0,故az/ax=-(1+yz)/(1+xy);F对x求导得aF/ax=e^x*y*z^2+e^x*y*2z*az/ax;当x=0,y=1时

由方程xyz=e^x确定的隐函数z=z(x,y)的全微分dz

代入:2z-2z+lnz=0--->z=1,所以z'(y)=-z/y从而dz=z'(x)dx+z'(y)dy=(e^x-yz)/(xy)

设由方程x+2y+z=e^(x-y-z)确定的隐函数为z=z(x,y),求d^2z/dx^2

x+2y+z=e^(x-y-z)两边对x求偏导注意到z=z(x,y)1+z'=e^(x-y-z)*(1-z')...(1)再对x求偏导z"=e^(x-y-z)(1-z')^2-z"e^(x-y-z).